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Abstract

A manufacturer seeks to license a product to downstream competitors with un-
known productivities. She can design a mechanism to allocate licenses to one or
multiple competitors. We identify the revenue-maximizing mechanism and show
it can be implemented through an interval auction: the highest bidder is exclusively
licensed if their bid is much higher than others, but multiple bidders are licensed
otherwise. This mechanism does not allocate efficiently, and we characterize the
distributions of buyer valuations that lead to over- or under-licensing. If buyers
arrive over time, the seller may delay licensing, and we show that the seller only
commits to exclusive contracts if she is less patient than the buyers.
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1 Introduction

Consider BioNTechdeveloping the next-generationmRNAvaccine anddecidingwhether
to license this technology to two rival pharmaceutical companies: Pfizer and Johnson &
Johnson (J&J). Each company privately understands the benefits the technology would
bring to their vaccine development efforts, especially if they are the sole licensee. While
BioNTech could license the technology to both Pfizer and J&J, doing so would reduce
each company’s competitive edge due to increased rivalry in the vaccine market. If
BioNTech’s objective is to maximize profits from this licensing, should it commit to
exclusivity by auctioning the license to the highest bidder? Should it set a fixed price
and offer the license to both companies? Or is there a better approach? This paper
examines the revenue-maximizing mechanisms in such scenarios.

In many markets—such as information sales, franchise licensing, and government
procurement—sellers face similar trade-offs. Should OpenAI allow only Apple to inte-
grate ChatGPT, only Android, or both? Should Bloomberg provide proprietary market
trend data exclusively to a top investment bank, to a hedge fund, or to anyone willing
to pay? Should Intel sell its processors exclusively to Dell or offer them to multiple
manufacturers? All these cases share three critical features: the seller is able to repli-
cate the good, there are externalities between the buyers, and the buyers hold private
information about their profits. Despite the ubiquity of these situations, the seller’s
optimal strategy remains largely unknown. We aim to bridge this gap.

We begin our analysis by modeling competitive profits, relevant when licenses are
issued to more than one buyer, as a proportion of monopoly profits. In this setup,
each buyer’s profit depends on their private type. This framework effectively captures
various market scenarios while maintaining analytical tractability. Moreover, it un-
derscores a key assumption in this paper: while buyers have private information about
their own valuations, the market structure, which captures the externalities among
buyers, is common knowledge. As a result, the seller knows how to map buyers’ valu-
ations to outcomes when allocating the good to multiple buyers.

Our first result is identifying the optimal mechanism that maximizes the seller’s
profit. While the insights apply to any number of buyers, for simplicity, we explain
them below using the case of two buyers. This mechanism allocates the good to a single
buyer when their private valuation significantly exceeds that of the other and allocates
it to both buyers otherwise. To implement the mechanism in dominant strategies, we
introduce what we term an interval auction. In an interval auction, each buyer submits
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a bid, around which specific neighborhoods are defined. If a bid is below the neighbor-
hood of the competitor’s bid, that buyer is excluded and incurs no cost. If a bid falls
within the neighborhood of the competitor’s bid, both buyers are awarded the good
and pay the lowest price consistent with them being in their competitor’s neighbor-
hood. Finally, if a bid exceeds the neighborhood of the competitor’s bid, that bidder
alone is awarded the good, paying a premium for it. Thus, in this auction, it is not only
the highest bid that matters; the entire distribution of bids influences outcomes. If the
bids cluster closely, multiple licenses are awarded; if they are widely dispersed, only
the highest bidder receives a license. Despite the inherent complexities, our findings
reveal that implementation is relatively simple, making it a viable option for real-world
application.

Next, we characterize inefficiencies absent in traditional auctions. In our setup, the
seller may either under or over-provide the good—selling to fewer or more buyers than
would be optimal under symmetric information. In standard auctions with symmet-
ric buyers, inefficiencies emerge only when virtual valuations are non-increasing or
negative. As long as virtual valuations are monotonic, the auctioneer’s most valuable
bidder remains unchanged regardless of whether buyers have private information or
not. However, when the auctioneer can sell to multiple buyers, the optimal allocation
is governed by the ratio of valuations under symmetric information and by the ratio
of virtual valuations under private information. It is this discrepancy between the two
ratios that drives inefficiencies. We find that these inefficiencies are ubiquitous: the
optimal mechanism is efficient if and only if the distribution of buyers’ types belongs
to the Pareto family. Importantly, we establish a link between the shape of the distri-
bution of buyers’ types and the nature of the inefficiency—whether the good is under
or over-provided. Put simply, our result reveals that a policymaker can assess whether
a good will be over or under-supplied in a market based on an understanding of the
distribution of valuations without needing to know about market conduct or the mag-
nitude of externalities.

We extend our analysis by adapting the baseline model to a dynamic framework
where bidders arrive sequentially over time. In this setup, our key assumption is that
once a seller grants a license to a buyer, they cannot revoke it later. Under the opti-
mal dynamic mechanism, when the first buyer arrives, the seller either grants them a
license if their type is high enough or asks them to wait for another buyer. When the
seller faces multiple buyers, the profit-maximizing allocation aligns with that of the
static model. It turns out that it is never optimal for the seller to promise future exclu-
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sivity to an early-arriving buyer. We find that in the dynamic environment, asymmetric
information creates an additional inefficiency. It affects not only the number of licenses
issued, as in the static case but also influences which initial buyers are or are not issued
a license. Buyers who would receive licenses immediately under complete informa-
tion might be asked to wait, or vice versa. Concretely, we observe that sellers tend to
over-wait when they under-provide licenses and under-wait when they over-provide.
We once again establish a direct link between these inefficiencies and the shape of the
distribution of buyer valuations, which turns out to be the same condition as in the
static model. A policymaker can narrow their concerns simply by understanding this
distribution.

We then consider a scenario where the seller is less patient than the buyer, under the
assumption that payments are made upfront. In this setup, the seller offers the initial
buyer a contract that specifies future allocations for each period inwhich another buyer
may arrive, with payments made upfront. Allocation cutoffs are proportional to those
in the static model but become progressively more favorable to the initial buyer over
time. There is a finite period in the future beyond which—if the other buyer has not
yet arrived—the seller guarantees exclusivity to the current buyer. However, even in
this case, the exclusive contract is offered only at a point sufficiently far in the future.
In other words, we find that it is challenging to justify contracts that offer immediate
exclusivity to buyers.

Finally, we extend the static model to accommodate more general profit functions
with supermodular returns from exclusivity. We then extend the framework to account
for interdependencies, where a buyer’s profits, when winning with others, depend not
only on their own type but also on the types of their competitors. This adjustment
introduces correlations among buyers’ valuations, shifting our analysis from a frame-
work of independent private values to one that involves the complexities of common
value auctions. We identify sufficient conditions on preferences and distributions, that
ensure the optimality of our mechanism.

The remainder of the paper is organized as follows: In Section 2, we begin our
analysis with the baseline model. In Section 3, building on insights from the previous
section, we examine a dynamic version of the model. In Section 4, we extend the model
to account for more general profit functions as well as interdependent valuations. We
consider applications in Section 5, and conclude in Section 6.
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1.1 Related Literature

PatentLicensing Ourpaper relates to a body ofwork onpatent licensing in oligopolis-
tic downstream industries (Kamien andTauman, 1986; Katz and Shapiro, 1986; Kamien
et al., 1992; Sen and Tauman, 2007; Li and Wang, 2010; Doganoglu and Inceoglu,
2014).¹ These papers conduct their analysis under no ex-ante uncertainty regarding
the types of buyers. In contrast, in our setup, while the distribution of buyers’ types is
common knowledge, their realized values are private. The role of informational asym-
metry is taken seriously in later works such as Choi (2001), Poddar et al. (2002), and
Sen (2005), which allow for asymmetric information but consider only a monopolistic
buyer.² On the other hand, allowing for multiple buyers, Antelo and Sampayo (2017)
studies a signaling problem, while Antelo and Sampayo (2024) studies a screening
problemwhere the types of buyers can be high or low.³ Both the earlier andmore recent
studies focus on identifying optimal licensing strategies within a range of mechanisms,
such as determining the optimal fees, setting the optimal reservation price in a first-
price auction, and establishing the optimal royalties. In contrast, our work identifies
the optimal mechanism from the entire set of feasible options.

Within the licensing literature, of relevance for our initial static setup is the work of
Schmitz (2002), who considers selling a license to two potential buyers. They charac-
terize the profit-maximizing mechanism and identify potential inefficiencies that may
arise from information asymmetries. Differently from this paper, we characterize pre-
cisely when such inefficiencies arise, allow for more than two buyers, study a dynamic
version, and allow for general profit functions, including cases with interdependent
types.

MechanismDesignwithExternalities Ourpaper is related to the literature onmech-
anism design with externalities, particularly relating to the works of Jehiel et al. (1996)
and Jehiel et al. (1999), which explore multidimensional settings with unknown mar-
ket structures. In contrast, we model the market structure as a function of all buy-
ers’ types, which in turn reduces dimensionality and enhances tractability, allowing
for a comprehensive characterization of the optimal mechanism. Additionally, our
approach permits multiple sales of the good and considers externalities based on the

¹For an early survey, see Kamien (1992).
²There is also a literature that incorporates asymmetric information where the quality of the innova-

tion/license is not fully known to the buyers (Zhang et al., 2016; Jeon, 2019; Wu et al., 2021).
³Differently from this body of work, Heywood et al. (2014) and Fan et al. (2018) consider a setup in

which the seller is an active competitor in the market.
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opponent’s realized type, not just their identity.
Of relevance is also Jehiel and Moldovanu (2000), who study auctions with down-

stream interactions among buyers. Like our work, they model outcomes as a function
of buyers’ types, but unlike us, they focus on the sale of a single unit and focus their
analysis on second-price, sealed-bid auctions.

Auctions with Common Values Our work also relates to the literature on auctions
with common values, including classic studies by Milgrom and Weber (1982) and Bu-
low and Klemperer (1996), as well as more recent approaches that identify the optimal
mechanism under specific setups, such as Bergemann et al. (2020).⁴ Our work differs
from this existing body of literature in two important ways. First, we allow for the sale
of multiple goods. Second, in our setup, buyers’ types are negatively correlated. As it
turns out, this negative correlation aids in characterizing the optimal mechanism.

Multi Unit Auctions Our setup shares similarities with the literature on multi-unit
auctions and bundling. In particular, the decision to offer two licenses to two different
buyers, which reduces their individual payoff, rather than a license to one buyer is
akin to the decision of selling goods to two or one buyer (Armstrong, 2000; Avery and
Hendershott, 2000). We diverge from that setup in several ways. First, by assuming
the market structure is known, and focusing on buyers’ productivities as their types,
we reduce the dimensionality of the type space—each bidder is no longer associated
with different marginal values for each additional item. We also extend beyond the
standard multi-unit auction approach by incorporating dynamics and by allowing for
interdependent valuations of the goods.

2 The Setup

An auctioneer has an item to sell to 𝑁 potential buyers, indexed in 𝒩 = {1, ..., 𝑁}. This
item differs from standard commodities in two key ways. First, it generates external-
ities: buyers’ valuations of the product depend on how many other buyers purchase
it. Second, the item can be replicated at no cost—allowing the seller to sell to multiple

⁴This work differs from studies where the correlation lies on bidders’ signals rather than directly in
their valuations. Such a scenario was explored even by Myerson (1981), who illustrated that if bidders’
private information is correlated, the seller can design a mechanism to extract the full surplus. Crémer
and McLean (1985) demonstrated that Myerson’s example has broad applicability, and subsequent re-
search, including Crémer andMcLean (1988), McAfee et al. (1989), andMcAfee and Reny (1992), further
established that this result holds under even more general conditions.
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buyers. Consider the 2𝑁 possible subsets of 𝒩, and let the 𝑘th subset be denoted by 𝒥𝑘.
The cardinality of 𝒥𝑘 is represented by |𝑘|. For any subset 𝒥𝑘 ⊆ 𝒩, the utility of buyer
i when all members of 𝒥𝑘 receive the item is given by

𝑢(𝜃𝑖,𝒥𝑘) = 𝜃𝑖𝛼𝑖
𝑘.

We normalize the utilities of agents who do not purchase an item to zero, i.e., when
𝑖 ∉ 𝒥𝑘, to 𝛼𝑖

𝑘 = 0. Thus, utilities are characterized by a benefit from purchasing the
good, 𝜃𝑖, and a flexible vector of market coefficients, 𝛼𝑖. By stacking the 𝛼𝑖 vectors,
we form a matrix 𝐴 with dimensions 2𝑁 × 𝑁. Our main assumption is that 𝐴 is com-
mon knowledge, reflecting themarket structure in the post-allocation stage, while each
agent’s taste for the good is private information.⁵ Each 𝜃𝑖 is assumed to be indepen-
dently drawn from a regular distribution with cumulative distribution 𝐹 that has full
support. We make further assumptions about 𝛼 values. In particular, we impose sym-
metry: if 𝑖 ∈ 𝒥𝑘, then 𝛼𝑖

𝑘 = 𝛼|𝑘|. Additionally, we assume 𝛼𝑖
𝑘 ∈ [0, 1] for all 𝑖 and 𝑘.

Utilities are quasilinear in money.
An allocation is a distribution over subsets of 𝒩, and due to replicability, the auc-

tioneer can supply any of these subsets. Let𝒥 denote the set of all such subsets. Given
this setup, the revelation principle applies, allowing us to focus on identifying the
truthful direct revelation mechanism that maximizes revenue.

2.1 First Best Allocation

We start by establishing the revenue-maximizing allocation under symmetric informa-
tion. If the principal knows the vector 𝜃 = (𝜃1, ..., 𝜃𝑁), she chooses transfers 𝑖 and an
allocation 𝜎𝑘 to solve:

max
𝜎∈Δ𝒥,{𝑟𝑖}𝑖=1,...,𝑁


𝑖

𝜏𝑖

s.t. 𝜃𝑖 
𝑘

𝜎𝑘𝛼𝑖
𝑘 − 𝑟 𝑖 ≥ 0 for all 𝑖 = 1,… ,𝑁 (IR)

It is clear that (IR) must hold with equality in any solution. Thus, the problem can
be simplified to a simple accounting problem: the seller considers the maximal gross

⁵As we show later, the principal does not need to have this market knowledge. As long as the buyers
know the market structure, the optimal mechanism can be implemented.
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payoff that buyers can obtain across all possible groups and extracts all revenues. As
usual, the revenue-maximizing allocation under symmetric information is alsowelfare-
maximizing, so we call it the first-best allocation.

The principal’s problem can be easily understood in the case where 𝑁 = 2. Here,
the payoff for being allocated the good alone is normalized to 𝜃𝑖, and we define 𝛼𝜃𝑖 as
the payoff when the good is allocated to both buyers. In this case, it is optimal to sell
to 𝑖 alone if 𝜃𝑖

𝜃𝑗 ≥ 𝛼
1−𝛼 . By contrast, it is optimal to sell to both 𝑖 and 𝑗 if 𝛼

1−𝛼 ≥ 𝜃𝑖
𝜃𝑗 ≥

1−𝛼
𝛼 .

Importantly, the optimal allocation is driven by the ratio of valuations 𝜃𝑖/𝜃𝑗 .

2.2 Revenue-Maximization under Asymmetric Information

Next, we characterize the revenue-maximizing mechanism when the seller does not
observe the realized 𝜃 values of the buyers. Our first observation is that we can change
the allocation space from Δ𝒥 to an interval in ℝ. To see this, start with any allocation
𝜎 ∈ Δ𝒥. This allocation leads to the following expected utility for agent 𝑖:

𝔼𝜎[𝑢(𝜃,𝒥𝑘)] = 𝜃 
𝑘

𝜎𝑘𝛼𝑖
𝑘


𝑞𝑖(𝜎)

We call 𝑞𝑖(𝜎) an assignment. Let 𝑞(𝜎) be the vector of assignments. Then, if Δ𝒥 is the
set of feasible allocations, we can define the associated feasible assignment set as

𝒬 = 𝑞 ∈ ℝ𝑁 ∶ ∃𝜎 ∈ Δ𝒥, 𝑞 = 𝑞(𝜎) .

Define 𝛼𝑘 = ⒧𝛼1
𝑘 , 𝛼2

𝑘 ,… , 𝛼𝑁
𝑘 ⒭ . It is clear that:

Lemma 1. 𝒬 = co 𝛼𝑘 ∶ 𝑘 ∈ {1,… , 2𝑁}. 𝒬 is a convex polytope.

For an expected market share vector 𝑞 define

𝑄𝑖(𝜃𝑖) = 𝑞𝑖 ⒧𝜎 ⒧𝜃𝑖, 𝜃−𝑖⒭⒭ 𝑑𝐹−𝑖(𝜃−𝑖),

and

𝑈𝑖(𝜃𝑖) = 𝜃𝑖𝑄𝑖(𝜃𝑖) − 
⎡⎢⎢⎢⎢⎣

𝑘

𝜎𝑘(𝜃𝑖, 𝜃−𝑖)𝑟 𝑖𝑘(𝜃𝑖, 𝜃−𝑖)
⎤⎥⎥⎥⎥⎦
𝑑𝐹−𝑖(𝜃−𝑖)


𝑅𝑖(𝜃𝑖)
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The expected utility of agent 𝑖, given their realized value 𝜃𝑖, is the net gains minus the
expected transfer.

Lemma 2. An allocation 𝜎 is implementable if and only if the following conditions hold:

1. Monotonicity: 𝑄𝑖 is increasing for all 𝑖;

2. Envelope Condition: 𝑈𝑖(𝜃𝑖) = 𝑈𝑖(𝜃) + ∫
𝜃
𝜃 𝑄𝑖(𝑣)𝑑𝑣;

3. Individual Rationality: 𝑈𝑖(𝜃𝑖) ≥ 0 for all 𝑖, 𝜃𝑖;

4. Feasibility: 𝑞(𝜎) ∈ 𝒬.

This represents the usual set of conditions for auction implementability, with the
exception of feasibility. While in standard auctions feasibility requires allocations to
be located in the unit simplex, our feasibility condition imposes that trade probabilities
are contained within the polytope 𝒬—which,in general, extends beyond the unit sim-
plex. Conversely, in standard auctions, these probabilities must reside within the unit
simplex, as detailed in (Myerson, 1981). The problem of the principal then reduces to

max
𝑈𝑖 ,𝑄𝑖 ,𝑞𝑖


𝑖

⒧𝜃𝑖𝑄𝑖(𝜃𝑖) − 𝑈𝑖(𝜃𝑖)⒭ 𝑓(𝜃)𝑑𝜃

s.t. 1 − 4.

Define the virtual valuation of a type 𝜃 agent as: 𝑣(𝜃𝑖) = 𝜃𝑖 − 1−𝐹𝑖(𝜃𝑖)
𝑓𝑖(𝜃𝑖) . Following the

standard integration by parts approach, the problem of the principal becomes

max
𝑞𝑖


𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜃)𝑓(𝜃)𝑑𝜃

s.t. 1 and 4.

The next proposition characterizes the allocation in the optimal mechanism when
𝑁 = 2.

Proposition 1. Let 𝑁 = 2. In the optimal mechanism, allocations satisfy:

(𝑞1, 𝑞2)(𝜃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 0), if 𝑣(𝜃1)
𝑣(𝜃2) ≥

𝛼
1−𝛼

(𝛼, 𝛼), if 𝛼
1−𝛼 ≥ 𝑣(𝜃1)

𝑣(𝜃2) ≥
1−𝛼
𝛼

(0, 1) , otherwise

(1)
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2.3 Inefficiencies

In traditional auction theory, asymmetric information can lead to inefficiencies in two
primary ways. First, having non-increasing virtual valuations or heterogeneous agents
could result in a scenario where an agent with a lower valuation wins the auction, caus-
ing an ex-post inefficient allocation. The second type of inefficiency arises if virtual
values can be negative. If the realized virtual values are negative across all agents,
the good remains unsold even if all agents value it more than the seller. In our setup,
inefficiencies not found in traditional auctions emerge. To distinguish these from con-
ventional suboptimal outcomes, we assume that all agents draw their types from the
same regular distribution 𝐹 and that virtual valuations are increasing. This eliminates
the first inefficiency. Furthermore, by ensuring that virtual values are positive for all
realizations, we eliminate the second inefficiency.

Assumption 1. 𝑣 is increasing and 𝑣(𝜃) ≥ 0.

Definition 1. Let 𝑞𝑓 be the first-best allocation. We say that a mechanism inducing alloca-
tion 𝑞 under- (over-) provides if:

𝑞1(𝜃) + 𝑞2(𝜃) ≤ (≥)𝑞1𝑓(𝜃) + 𝑞2𝑓(𝜃) for all 𝜃.

An allocation is efficient if equality holds above.

Let ℎ(𝜃𝑖) represent the inverse hazard rate. Define 𝜆(𝜃𝑖) ≡ ℎ(𝜃𝑖)𝜃𝑖.⁶

Proposition 2. The profit-maximizing mechanism

• Is Efficient for all 𝛼 values if and only if 𝜆 is constant — that is, 𝐹 is in the Pareto
family.

• Under-provides for all 𝛼 values if 𝜆 is increasing.

• Over-provides for all 𝛼 values if 𝜆 is decreasing.

The above proposition implies that the profit-maximizingmechanismwill prescribe
the same allocation as the first-best outcome for any 𝛼 and any realized type values if
and only if the buyer’s types follow a distribution within the Pareto family. While
we know from previous work, such as Jehiel et al. (1996) and Schmitz (2002), that
information asymmetries can lead a profit-maximizing monopolist to over-provide a
good, our paper is, to the best of our knowledge, the first to specifically characterize

⁶Which can be interpreted as the price-elasticity of demand.
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when such inefficiencies occur, based on the distribution of buyers’ types. To build
some intuition about this result, we once again go back to an𝑁 = 2 example. Note that,
differently from the first-best outcome, the behavior of the principal, while similar, is
no longer dictated by the ratio of valuations 𝜃𝑖/𝜃𝑗 . Rather, the iso-profit curve is now
determined by the ratio of virtual valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ). There is, of course, no reason
for these two ratios to be the same, especially not for any realization of 𝜃𝑖 and 𝜃𝑗 . In
particular, 𝜃1

𝜃2 = 𝑣(𝜃1)
𝑣(𝜃2) for all vectors 𝜃 if and only if 𝑣 is linear. We complete the proof

by showing that 𝑣 is linear if and only if 𝐹𝑖 belongs to the Pareto family. To see that,
assume 𝑣(𝜃) = 𝜆𝜃, 𝜆 > 0. We then have:

𝜃 − 1 − 𝐹(𝜃)
𝑓(𝜃) = 𝜆𝜃.

Solving this differential equation yields the unique solution:

𝐹(𝜃) = 1 + 𝑘𝜃− 1
1−𝜆 .

The only family of CDFs satisfying this equation is the Pareto family. For any other
distribution, the two ratios highlighted above will differ at least for some realizations.
We show two such examples in Figure 1. The figure illustrates the profit-maximizing

Figure 1: Examples of Under and Overprovision

Notes: The figure above displays the profit-maximizing and the first-best allocations for different re-
alized values of 𝜃𝑖 and 𝜃𝑗 . In the left panel, it is efficient to allocate the good to both agents, but it is
profit-maximizing to allocate the good to agent 𝑖 exclusively—underprovision. In the right panel, it is
efficient to allocate exclusively to agent 𝑖, but it is profit-maximizing to allocate to both—overprovision.

and the first-best allocations for different realized values of 𝜃𝑖 and 𝜃𝑗 . In the left panel,
when behavior is governed by the ratio of valuations 𝜃𝑖/𝜃𝑗 , it is efficient to allocate the

10



good to both agents. However, in the case of asymmetric information, as previously
discussed, behavior is driven by the ratio of valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ), leading to the good be-
ing allocated exclusively to agent 𝑖 as the profit-maximizing outcome. Consequently,
the good is underprovided. In the right panel, it is efficient to allocate the good ex-
clusively to agent 𝑖, but profit maximization dictates allocating to both agents. Thus,
the good is overprovided. The potential for overprovision and underprovision is not
only theoretical; there exists a nonempty set of distributions for which either outcome
is possible, Figure 2 presents two such examples.

Figure 2: Examples of Distributions leading to Under and Overprovision

Notes: The figure above illustrates both the profit-maximizing and first-best allocations. The distribu-
tions used in each example are shown at the top of the graphs, with 𝛼 = 0.56.

The figure displays the profit-maximizing and the first-best allocations for differ-
ent values of 𝜃𝑖 and 𝜃𝑗 . The shaded blue(orange) areas indicate the regions where the
good is provided to both agents under the first-best(profit-maximizing) allocation. On
the left panel, the shaded orange region is contained within the shaded blue region,
indicating that there are realizations of 𝜃𝑖 and 𝜃𝑗 for which both agents would receive
the good under the first-best allocation, but only one agent receives it under the profit-
maximizing allocation, leading to underprovision. Conversely, in the example on the
right, the shaded blue region is contained within the shaded orange region, indicat-
ing that there are realizations of 𝜃𝑖 and 𝜃𝑗 for which an agent would receive the good
exclusively under the first-best allocation, but both agents receive it under the profit-
maximizing allocation, leading to overprovision. Thus, there exists a nonempty set of
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distributions for which either outcome is possible.
We reiterate that these inefficiencies, whether they involve under- or over-provision

of the good, are absent in standard auctions. To underscore that typical inefficiencies
are not the drivers of these results, we have assumed that all agents draw their types
from the same distribution 𝐹 and that virtual values are positive and increasing. Under
these assumptions, standard auctions do not exhibit inefficiencies. Yet, in this setup,
over- or under-provision can occur.

2.4 Implementation

Next, we turn to the implementation of the optimal mechanism. In particular, we look
for implementations that satisfy the following two desiderata:

1. Implements the optimal allocation truthfully and in dominant strategies.

2. Does not require payment from excluded agents.

Definition 2. An interval auction: for each bid 𝑏 there exist thresholds 𝜏(𝑏) < 𝑏 < 𝜏(𝑏)
such that

𝑞𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼 if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

𝑡𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖) if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼𝜏(𝑏−𝑖) if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

Proposition 3. The optimal mechanism is implemented in dominant strategies by an inter-
val auction.

In other words, the optimal allocation can be implemented truthfully and in domi-
nant strategies without loss of revenue to the seller. The mechanism works as follows:
both agents are asked to submit bids. Assume, without loss, that 𝑏1 ≥ 𝑏2. If 𝑏1 < 𝜏(𝑏2),
then allocate the good to both agents, who pay 𝛼𝜏(𝑏−𝑖) each. If 𝑏1 ≥ 𝜏(𝑏2), then allocate
the good to the first bidder only. This bidder pays 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖). We visualize
the workings of this mechanism in Figure 3 below.
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Figure 3: Interval Auction Implementation

Notes: The figure above visualizes the profit-maximizing implementation via an interval auction.
Around the bid of the opponent 𝑏−𝑖 there is a n neighborhood (𝜏(𝑏−𝑖), 𝜏(𝑏−𝑖)). If the agent’s bid falls
below this neighborhood, he is excluded and pays nothing 𝑡𝑖 = 0. If his bid falls within this neighbor-
hood, both agents are allocated the good and pay 𝑡𝑖 = 𝛼𝜏(𝑏−𝑖). Finally, if an agent bid falls above this
neighborhood, he is provided the good exclusively and pays 𝑡𝑖 = 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖).

In this implementation, for an agent to secure exclusive rights to the good, they
must significantly outbid the other agent. Merely outbidding the other agent by a small
margin results in both agents being allocated the good. Conversely, if an agent loses
by only a small margin, both agents still receive the good. The agent is excluded only
when their bid is substantially lower than their opponent’s. Notice that in this mech-
anism, when both agents are allocated the product, the agent with the lowest bid pays
more than the agent with the highest bid. Regardless, this does not imply incentives to
increase their own bid, as their payment does not depend on their individual bid.

2.5 Revenue Comparison

The revenue difference can be compared among various mechanisms, such as a posted
price, a standard auction where the good is sold to a single buyer, and the optimal
mechanism identified in this paper. This comparison can be formalized as follows.
First, because virtual valuations are assumed to be positive, it can be shown that the
optimal posted price involves setting the price at 𝛼𝜃, where both agents purchase the
product. Through standard manipulations of the virtual value function, this revenue
can be expressed as

𝑅𝑝 = 𝛼𝔼 𝑣 ⒧𝜃(1)⒭ + 𝑣 ⒧𝜃(2)⒭ .

On the other hand, the revenue from a standard auction, where the designer com-
mits to selling only one product, is determined by the expected value of the second-
highest bid, which can be expressed as

𝑅𝑎 = 𝔼 𝑣(𝜃(1) .
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Thus, a constrained seller who chooses between these two mechanisms would ob-
tain revenue at most

𝑅𝑐 = max{𝑅𝑝, 𝑅𝑎}.

Now, consider the seller who chooses an optimal mechanism. We know the seller
sells to the buyer with the highest realization if 𝑣(𝜃(1)) ≥ 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭. By the
virtual-valuation representation of the seller’s revenue, in that case, the seller’s revenue
is exactly 𝑣(𝜃(1)). This simple logic establishes the following proposition, which states
that the difference between the unconstrained and the constrained revenues is precisely
quantified by a Jensen gap.

Proposition 4. Under assumptions 1, 2 and 3, the difference between the optimal revenue,
𝑅 and the revenue constrained to posted prices and standard auctions is

𝑅 − 𝑅𝑐 = 𝔼 max 𝑣(𝜃(1)), 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭ −max 𝔼 𝑣(𝜃(1)) , 𝛼𝔼 𝑣(𝜃(1)) + 𝑣(𝜃(2)) .

Figure 4 illustrates this comparison. For any 𝛼 ∈ (0.5, 1), interval auctions outper-
form either mechanism. Notably, as 𝛼 approaches 0.5, the likelihood of selling to a
single agent increases—the polytope discussed earlier converges to the unit simplex—
causing the profits from interval auctions to converge to those of a regular auction.
Conversely, as 𝛼 approaches 1, the externalities from having two active firms dimin-
ish, leading profits to align with those from a posted price.

Therefore, when externalities are so severe that the seller would not consider selling
to more than one buyer, using a traditional auction results in minimal or no revenue
loss. On the opposite end, if there are no externalities, the seller maximizes profits by
selling to all buyers, with the only optimization being the determination of the optimal
price. Consequently, it is in the intermediate cases—where externalities are significant
but not overwhelming—that our mechanism offers the greatest advantages.

3 Dynamic Model

Wenow consider a version of themodel inwhich buyers arrive sequentially, so the seller
also decides the timing of license concesssions. Time is discrete and runs indefinitely:
𝑡 ∈ ℕ. At any time 𝑡, with probability 𝜆, a buyer 𝑖 ∈ {1, 2} may arrive. Arrival times
are independent between buyers. Buyers discount the future at rate 𝛿, while the seller
discounts the future at rate 𝜌, with 𝜌 ≤ 𝛿. We let 𝑎𝑖 ∈ ℕ denote the arrival time of buyer
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Figure 4: Revenue Comparison

Notes: For different 𝛼 values, the graph above compares the revenue from a posted price, a standard
auction in which the good is sold to one buyer, and the optimal mechanism.

𝑖—if the buyer has not arrived, denote 𝑎𝑖 = 𝑜. A direct mechanism consists of functions
[𝑞𝑖𝑡, 𝑟 𝑖𝑡 ]𝑖={1,2},𝑡∈ℕ: an allocation 𝑞𝑖𝑡 ∶ Θ2×ℕ2 → [0, 1] and a transfer 𝑟 𝑖𝑡 ∶ Θ2×ℕ2 → ℝwhich
specify, for every buyer 𝑖, time 𝑡, types 𝜃 = (𝜃𝑖, 𝜃−𝑖), and arrival times 𝑎𝑖, 𝑎−𝑖, a number
between 0 and 1, and a value in the reals. Let 𝑐𝑖𝑡 = (𝑞𝑖𝑡, 𝑟 𝑖𝑡). We impose the following
restrictions on mechanisms:

Definition 3. A mechanism is permissible if it satisfies

1. Feasibility: for each 𝑡, (𝑞1𝑡 , 𝑞2𝑡 ) ∈ 𝒬;

2. Consistency: for 𝑎𝑖 > 𝑡, 𝑐𝑖𝑡 = 0 and 𝑐−𝑖𝑡 (𝜃𝑖, 𝜃−𝑖, 𝑎𝑖, 𝑎−𝑖) = 𝑐−𝑖𝑡 (𝜃′
𝑖 , 𝜃−𝑖, 𝑎′, 𝑎−𝑖) for all

𝜃−𝑖 ∈ Θ, 𝑎′ > 𝑡;

3. Irreversibility: Let 𝑡′ > 𝑡 ≥ 𝑎𝑖. Then, if 𝑎𝑗 > 𝑡′, 𝑞𝑖𝑡′ ≥ 𝑞𝑖𝑡. If 𝑎𝑗 ≤ 𝑡′, then 𝑞𝑖𝑡′ ≥ 𝛼𝑞𝑖𝑡.

The first condition is the same as in the static model and ensures that the assign-
ments of the product to the agents are consistently represented in the allocation. The
second condition restricts what can be offered when one agent has not yet arrived. In
particular, it must be that if a buyer has not yet arrived, they cannot be allocated the
good or be asked for any transfers. On the other hand, the allocation and transfer of
the buyer who has arrived cannot depend on the type of buyers who have not yet ar-
rived. The most significant restriction out of the three is irreversibility. Irreversibility
implies that once the designer allocates a license to an agent, she cannot take it back.
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This implies that the probability of being assigned a license cannot decrease over time.
Thus, the only way a buyer’s allocation can be reduced is if another buyer arrives and
is also allocated a license with some probability.

We focus on cases in which agents arrive sequentially. We soon clarify that when
buyers arrive simultaneously, the optimal mechanism is the one identified in the static
model. Without loss of generality, say that agent 1 is the first to arrive. Because the
problem of the principal effectively starts at that time—due to consistency—we nor-
malize 𝑎𝑖 = 0. We also assume all transfers 𝑟, from 𝑖 happen at the time of arrival of
agent 𝑖, which is without loss of optimality given the assumptions on discount rates.
The payoff of an agent 1, who arrives first and at 0, is:

𝑈1(𝜃1) = 𝔼𝜃2

⎡⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗(1 − 𝜆)𝑗𝑞1𝑗 (𝜃1) +
∞


𝑗=0

𝜆(1 − 𝜆)𝑗
∞


𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)
⎤⎥⎥⎥⎥⎥⎦
𝜃1 − 𝑟1(𝜃1),

The first term in the parentheses takes into account the times 𝑡 such that 𝑎2 > 𝑡, that
is buyer 2 has not yet arrived. In this case, we know that 𝑞1 does not depend on 𝜃2 or
𝑎2, by consistency, so we omit those variables. The second term takes into account the
cases when buyer 2 arrives at time 𝑗 + 1.

When the second agent arrives, their utility at time 𝑎2 is:

𝑈2(𝜃1, 𝜃2, 𝑎2) =
⎡⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗𝑞2𝑎2+𝑗(𝜃1, 𝜃2, 𝑎2)
⎤⎥⎥⎥⎥⎥⎦
𝜃2 − 𝑟2(𝜃1, 𝜃2),

The seller maximizes expected revenue, discounted by 𝜌, in the set of mechanisms
that are available, incentive compatible and individually rational at the time of arrival.

Proposition 5. Normalize the arrival time of buyer 1 to 𝑡 = 0 and let 𝑎 be the arrival time
of buyer 2. There exists some �̂� < 𝜃 such that

For all 𝑡 < 𝑎,

𝑞1𝑡 (𝜃1) =
⎧⎪⎪⎨⎪⎪⎩

1, if 𝜃1 ≥ �̂�

0, otherwise,
(2)
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Figure 5: Optimal Dynamic Mechanism

𝜃1

𝜃2

Waiting
Region

Non-Exclusive
Contract

{1}

{1, 2}
{2}

�̂�
𝜃1

𝜃2

𝜃1

𝜃2

Waiting
Region

Non-Exclusive
Contract

Exclusive
Contract

{1}

{1, 2}

{2}

�̂�

Notes: The figures above depict the revenue-maximizing dynamic mechanism. The left panel shows the
�̂� threshold: agents with types below this threshold are asked to wait, while those above it are imme-
diately issued a contract. In the latter scenario, depending on the type of the subsequent agent, 𝜃2, the
principal may choose to allocate to the first agent exclusively or to both agents but no longer exclusively
to the second. The middle panel illustrates how these cutoffs evolve for later arrival dates of the second
agent, becoming more favorable towards the first agent. The right panel presents the allocation regions
for sufficiently delayed arrival dates of the second agent. As can be seen, an exclusive contract region
emerges.

For all 𝑡 ≥ 𝑎

(𝑞1𝑡 , 𝑞2𝑡 )(𝜃1, 𝜃2, 𝑎) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 0), if ⒧ 𝛿𝜌 ⒭
𝑎 𝑣(𝜃1)
𝑣(𝜃2) ≥

𝛼
1−𝛼

(𝛼, 𝛼), if 𝛼
1−𝛼 ≥ ⒧ 𝛿𝜌 ⒭

𝑎 𝑣(𝜃1)
𝑣(𝜃2) ≥

1−𝛼
𝛼

⒧𝛼𝑞10(𝜃1), 1 − (1 − 𝛼)𝑞10(𝜃1)⒭ , otherwise

(3)

Figure 5 offers an illustration of the optimal mechanism. Based on the proposition
above, the optimal dynamic mechanism can be conceptualized as a two-step process.
In the first step, the decision is whether to issue a license to the buyer who has al-
ready arrived. The advantage of issuing a license immediately is that the buyer can be
charged a higher price, as they will begin operating and generating profits before the
second buyer arrives. However, the cost of issuing the license to the current buyer is
the lost option value of having only the second buyer active when they arrive—due to
irreversibility, this option is no longer available. Once the second buyer arrives, even
if their type is significantly higher than that of the first buyer, it is no longer possible
to revoke the first buyer’s license, meaning that the principal can, at best, make the
buyers share the market by issuing two licenses.

The second step of the mechanism is contingent on the decision made in the first
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step. If the decision was to wait, the principal then compares the types of buyers and
decides whether to allocate the license to buyer 1, to buyer 2, or to both. The cutoffs for
this decision are proportional to those from the staticmodel but are adjusted by a factor
of (𝛿/𝜌)𝑎. The higher the value of 𝑎, the lower this fraction becomes, thereby increasing
the likelihood that the principal will either sell the license exclusively to buyer 1 or at
least include him in the allocation. This is because the first buyer makes their payment
in period 0, while the second buyer, if included, makes their payment upon arrival.
Given the difference in discounting between the principal and the buyers, buyer 2’s
payment is reweighted, and this reweighting becomes more significant the later they
arrive. Consequently, the seller finds it optimal to favor buyer 1 more as the arrival
time of buyer 2 is delayed.⁷ As it turns out, even if the initial decision is not to wait, the
principal employs the same cutoffs in the second step, with the key difference being the
absence of an upper cutoff—there is no longer a range of realized types where buyer 2
would receive an exclusive contract.

Finally, the proposition indicates that when 𝑎 is sufficiently large, an exclusivity
region emerges. In other words, the conditions eventually become so favorable for the
first buyer, that even if the second buyer arrives with type 𝜃, the principal still allocates
the good exclusively to the first buyer. For any type of first buyer forwhom the principal
decides to allocate the license (𝑞10 = 1), this exclusivity region emerges in finite time.
However, this exclusivity region only materializes if 𝛿 > 𝜌, meaning the seller must be
less patient than the buyers. If, instead, 𝛿 = 𝜌, the seller never finds it optimal to write
a contract that guarantees exclusivity to the current buyer.

The dynamic mechanism gives rise to two types of inefficiencies compared to the
first best. First, when both agents have arrived, the designer may either over-allocate
or under-allocate the license, similar to the static problem. Second, when buyer one
arrives, the decision to grant him a license may also be inefficient. Compared to the
first best, the designer might commit to allocating to buyer types that are too low or,
conversely, fail to allocate to buyer types that would be chosen under the first-best
outcome. We formally define these two inefficiencies below.

Definition 4. Let 𝑞𝑖𝑓,𝑡 represent the first-best allocations. We say that the allocation 𝑞𝑡 in-

⁷Note that if the seller is more patient than the buyer (𝜌 > 𝛿), then it would be optimal to postpone
any payment as much as possible. With an infinite time horizon, the problem is no longer well-defined.
However, if we were to assume that a deadline exists, e.g. the game ends after 𝑇 periods, then all pay-
ments would be postponed to this 𝑡 = 𝑇 period. Because both buyers would make payments at that
period, the seller does not give preferential treatment to one of the buyers, thus, the optimal cutoffs
from the static mechanism are preserved.
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duced by a mechanism under- (over-)provides if:

𝑞1𝑡 (𝜃, 𝑎) + 𝑞2𝑡 (𝜃, 𝑎) ≤ (≥)𝑞1𝑓,𝑡(𝜃, 𝑎) + 𝑞2𝑓,𝑡(𝜃, 𝑎) for all 𝜃 and 𝑡 ≥ 𝑎 .

We say that the allocation is stringent (lenient) if:

𝑞1𝑡 (𝜃1) ≤ (≥)𝑞1𝑓,𝑡(𝜃1) for all 𝜃1 and 𝑡 < 𝑎.

Proposition 6. Let 𝜆 be increasing (decreasing). Then, for all 𝛼, the allocation is stringent
(lenient) and always under- (over-) provides the good.

The proposition demonstrates that these inefficiencies are interconnected: the same
conditions that lead to under-provision also imply that the designer becomes more
stringent in granting licenses to the first buyer. Thus, the distribution of buyers in
a market dictates whether there will be under- or over-provision of the good, as well as
whether the principal will adopt a stringent or lenient approach when issuing initial
contracts.

4 Model Generalizations

We started our analysis in Section 2 with a simplified model that allowed us to visual-
ize the mechanism’s inner workings and build intuition. One advantage of this initial
setup was that it required no additional assumptions beyond those typically used in
standard auction theory. While this model suffices for certain applications, its lim-
itations are apparent. Notably, we assumed that when transitioning from exclusive
control to sharing the market, the buyer’s profits were merely scaled by a constant fac-
tor, 𝛼 < 1. In reality, a firm’s profits in the presence of competition may not simply
be a fixed fraction of what they earn as a monopolist. This fraction can vary depend-
ing on the buyer’s type, and the effect of competition on profits often hinges on the
characteristics of the competitor. For instance, if a competitor has significantly higher
production costs, 𝛼 should approach 1, as they represent little competitive pressure.
On the other hand, a highly efficient competitor may dominate the market, leading to a
much lower 𝛼. Thus, when the market is shared, the outcomes for agent 𝑖 may depend
not only on 𝜃𝑖 but also on the type of agent 𝑗, specifically 𝜃𝑗 .

We proceed as follows. First, in Section 4.1, we retain the assumption that prof-
its depend solely on a buyer’s own type, but we analyze a scenario where the returns
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from exclusivity are captured by a general supermodular profit function. Next, we re-
lax the assumption that profits depend only on a buyer’s own type, allowing them to
also depend on the types of other buyers. In Section 4.2, we examine a setup where
this dependence is multiplicative. Finally, in Section 4.3, we explore the most general
framework, permitting any dependencies between agents’ types and payoffs. Table 1
below summarizes the additional sufficient conditions required for these alternative
models. We derive these assumptions and provide the underlying intuition in the sec-
tions that follow.

Table 1: Sufficient Conditions

Win Alone Win Together Sufficient Conditions

𝛼 Model 𝜃𝑖 𝛼𝑖𝜃𝑖 ∅

A buyer’s profit depends on own type only.

Supermodular 𝜃𝑖 𝑢(𝜃𝑖) max  −𝑢
′′(𝜃𝑖)

1−𝑢′(𝜃𝑖) ,
𝑢′′(𝜃𝑖)
𝑢′(𝜃𝑖)  ≤

𝑣′(𝜃𝑖)
ℎ(𝜃𝑖)

A buyer’s profit depends on both types.

Multiplicative 𝜃𝑖 𝑔(𝜃𝑗)𝜃𝑖 𝑣′(𝜃𝑖)
𝑣(𝜃𝑖) ≥

[1−𝑔(𝜃𝑖)]
′

1−𝑔(𝜃𝑖)

General 𝜃𝑖 𝑔(𝜃𝑖, 𝜃𝑗)
𝑣′(𝜃𝑖) ≥ 𝑣𝑔,1(𝜃𝑖, 𝜃𝑗) + 𝑣𝑔,2(𝜃𝑗 , 𝜃𝑖) ≥ 0

1 − 𝑔1(𝜃𝑖, 𝜃𝑗) ≥ 0
Notes: The table above reports the additional assumptions ensuring the analysis goes through.

4.1 General Supermodularity

Consider the following setting. If a buyer is allocated the good exclusively, their payoff
is 𝜃. If, however, the buyer shares the license, his payoff is 𝑢(𝜃) < 𝜃, where 𝑢 is an
increasing function. Define Δ(𝜃) = 𝜃 − 𝑢(𝜃). We assume that higher types gain more
from exclusivity than lower types (Δ′ > 0)—that is, profits are supermodular. Let an
allocation be represented by (𝑥1, 𝑥2), where 𝑥𝑖 is the probability of exclusive allocation
to agent 𝑖. Assuming that the seller always finds it optimal to allocate to some agent,
which we impose through conditions on virtual values, we have that 1 − 𝑥1 − 𝑥2 is the
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probability that both agents share the license. Feasibility is equivalent to 𝑥1 + 𝑥2 ≤ 1,
with 𝑥𝑖 ∈ [0, 1]. We can write the expected payoff of agent 𝑖 with type 𝜃𝑖 as:

𝑈(𝜃𝑖) = 𝔼[Δ(𝜃𝑖)𝑥𝑖(𝜃) + 𝑢(𝜃𝑖) ⒧1 − 𝑥𝑗(𝜃)⒭ − 𝑟 𝑖(𝜃)],

where, as before, 𝜃 = (𝜃1, 𝜃2). As usual, we denote by 𝑥𝑖(𝜃𝑘) the expectation of 𝑥𝑖(𝜃)
given that the type of agent 𝑘 is 𝜃𝑘. For any 𝜃𝑖, 𝜃′

𝑖 , BIC implies

𝑈(𝜃𝑖) − 𝑈(𝜃′
𝑖 ) ≥ ⒧Δ(𝜃𝑖) − Δ(𝜃′

𝑖 )⒭ 𝑥𝑖(𝜃′
𝑖 ) + ⒧𝑢(𝜃𝑖) − 𝑢(𝜃′

𝑖 )⒭ (1 − 𝑥𝑗(𝜃′
𝑖 ))

By switching the roles of 𝜃𝑖 and 𝜃′
𝑖 we obtain two familiar conditions

𝑈′(𝜃𝑖) = Δ′(𝜃𝑖)𝑥𝑖(𝜃𝑖) + 𝑢′(𝜃𝑖)(1 − 𝑥𝑗(𝜃𝑖)), (Envelope)

and

⒧Δ(𝜃𝑖) − Δ(𝜃′
𝑖 )⒭ ⒧𝑥𝑖(𝜃𝑖) − 𝑥𝑖(𝜃′

𝑖 )⒭ ≥ ⒧𝑢(𝜃′
𝑖 ) − 𝑢(𝜃𝑖)⒭ ⒧𝑥𝑗(𝜃′

𝑖 ) − 𝑥𝑗(𝜃𝑖)⒭ . (Monotonicity)

To satisfy the monotonicity condition above, it is sufficient that 𝑥𝑖 is increasing with
own-type 𝜃𝑖 and 𝑥𝑗 is decreasing with other-type 𝜃𝑖 (or, equivalently, 𝑥𝑖 is decreasing
with type 𝜃𝑗). Under the assumption that these conditions are met, after the usual
integration by parts, the problem of the seller becomes

max
𝑥1+𝑥2≤1


𝑖=1,2

𝔼⒧Δ(𝜃𝑖) − Δ′(𝜃𝑖)
1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

⒭ 𝑥𝑖(𝜃) + ⒧𝑢(𝜃𝑗) − 𝑢′(𝜃𝑗)
1 − 𝐹(𝜃𝑗)
𝑓(𝜃𝑗)

⒭ (1 − 𝑥𝑖(𝜃)) .

Without imposing any further constraints, the solution to this problem is 𝑥𝑖 = 1 if and
only if the two inequalities below hold

⒧Δ(𝜃𝑖) − Δ′(𝜃𝑖)
1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

⒭ − ⒧𝑢(𝜃𝑗) − 𝑢′(𝜃𝑗)
1 − 𝐹(𝜃𝑗
𝑓(𝜃𝑗)

⒭

≥ ⒧Δ(𝜃𝑗) − Δ′(𝜃𝑗)
1 − 𝐹(𝜃𝑗)
𝑓(𝜃𝑗)

⒭ − ⒧𝑢(𝜃𝑖) − 𝑢′(𝜃𝑖)
1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

⒭ ⟺ 𝑣(𝜃𝑖) ≥ 𝑣(𝜃𝑗),

and

Δ(𝜃𝑖) − Δ′(𝜃𝑖)
1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

≥ 𝑢(𝜃𝑗) − 𝑢′(𝜃𝑗)
1 − 𝐹(𝜃𝑗)
𝑓(𝜃𝑗)

. (4)

21



If the second inequality fails, then 𝑥𝑖 = 𝑥𝑗 = 0, implying both agents receive the
license. We now find conditions to guarantee that this allocation satisfies monotonic-
ity. Increasing virtual valuations implies that the first inequality is well-behaved. Let
ℎ(𝜃𝑖) = 1−𝐹(𝜃𝑖)

𝑓(𝜃𝑖) . Assume first that the problem is supermodular. In that case, our mono-
tonicity condition requires 𝑥𝑖 to be increasing in own-type, and therefore, that inequal-
ity (I) becomes more relaxed as 𝜃𝑖 grows. In other words, we want

Δ′(𝜃𝑖) (1 − ℎ′(𝜃𝑖))
𝑣′(𝜃𝑖)>0

−Δ′′(𝜃𝑖)ℎ(𝜃𝑖) ≥ 0

At the same time, we want 𝑥𝑖 decreasing in 𝜃𝑗 , which would follow from the inequality
equation (4) becoming more strict as 𝜃𝑗 grows. This holds if

𝑢′(𝜃𝑗)𝑣′(𝜃𝑗) ≥ 𝑢′′(𝜃𝑗)ℎ(𝜃𝑗).

Putting these two conditions together and noticing that Δ′′ = −𝑢′′, we obtain

− Δ′(𝜃𝑖)
<0 by supermodularity

𝑣′(𝜃𝑖)
ℎ(𝜃𝑖)

≤ 𝑢′′(𝜃𝑖) ≤ 𝑢′(𝜃𝑖)
𝑣′(𝜃𝑖)
ℎ(𝜃𝑖)

.

Notice that the sign of 𝑢′′ is sufficient for one of these inequalities. A reasonable as-
sumption is that 𝑢′′ > 0 (equivalently, Δ′′ < 0), which states that although the gain
from exclusivity increases with type, this increase is smaller and smaller as types grow.
Under that assumption, the first inequality above holds immediately, and the second
holds if 𝑢′′(𝜃𝑖)

𝑢′(𝜃𝑖) ≤
𝑣′(𝜃𝑖)
ℎ(𝜃𝑖) . Of course, the inequalities automatically hold if 𝑢′′ = 0, which is

the case in our initial model. Alternatively, it could be that the gains from exclusivity
not only increase but increase more as types grow. In this case, Δ′′ > 0 which implies
that 𝑢′′ < 0. Under this assumption, the second inequality above holds immediately,
while the first holds if −𝑢′′(𝜃𝑖)

1−𝑢′(𝜃𝑖) ≤
𝑣′(𝜃𝑖)
ℎ(𝜃𝑖) .

4.2 Multiplicative Model

We modify the setup in the following way. We maintain the assumption that agents’
types, 𝜃, are i.i.d. drawn from the same distribution 𝐹. If agent 𝑖, with type 𝜃𝑖, is
allocated the product alone, his payoff is 𝜃𝑖𝛽. On the other hand, if both agents are
allocated the product, their payoffs are 𝜃𝑖𝛼(𝜃−𝑖), for some decreasing function 𝛼(𝜃−𝑖),
with 𝛽 ≥ 𝛼 ≥ 𝛽

2 .
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In this setting, the allocation set can be represented as 𝑘 ∈ {0, 1, 2, 3}, where 𝑘 ∈ {1, 2}
indicates that agent 𝑖 is allocated the good alone, 𝑘 = 0 indicates that no one receives the
good, and 𝑘 = 3 indicates that both agents are allocated the good. For each realization
𝜗 = (𝜃1, 𝜃2), we then define

𝒫(𝜗) = {𝑞 ∈ ℝ2 ∶ ∃𝛾 ∈ Δ{0, 1, 2, 3}, 𝑞𝑖 = 𝛾𝑖𝛽 + 𝛾3𝛼(𝜃−𝑖), 𝑖 = 1, 2}.

Just as before, it is easy to see that, given a type realization, 𝒫(𝜗) is a polytope, repre-
senting feasible expected payoffs. Note that, in the space of expected payoff allocations,
buyers’ expected utilities can be written as

𝑈𝑖(𝜗) = 𝜃𝑖𝑞𝑖(𝜗) − 𝑡(𝜗).

Wecan then follow the argument in Bulow andKlemperer (1996), Lemma 3 to conclude
that the principal solves:

max
𝑞

𝔼
⎡⎢⎢⎢⎢⎣

𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜗)
⎤⎥⎥⎥⎥⎦

s.t. 𝑞(𝜗) ∈ 𝒫(𝜗)

𝔼𝜃−𝑖 [𝑞𝑖(𝜃𝑖, 𝜃−𝑖)] increasing in 𝜃𝑖, for 𝑖 = 1, 2

where 𝑣(𝜃𝑖) = 𝜃𝑖 − 1−𝐹(𝜃𝑖)
𝑓(𝜃𝑖) is the standard virtual valuation. We start by relaxing the

monotonicity assumption. Define 𝑎𝑖(𝜗) = 𝛼(𝜃𝑖)
𝛽−𝛼(𝜃−𝑖) . Note that 𝑎𝑖 is decreasing in 𝜃𝑖 and in

𝜃−𝑖. Then, it is easy to see that the optimal solution to the seller’s problem, 𝑞 solves:

𝑞𝑖(𝜗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if 𝑣(𝜃−𝑖) > 𝑎−𝑖(𝜗)𝑣(𝜃𝑖),

𝛼(𝜃−𝑖) if 𝑣(𝜃𝑖)
𝑎𝑖 ≤ 𝑣(𝜃−𝑖) < 𝑎−𝑖(𝜗)𝑣(𝜃𝑖)

𝛽 if 𝑣(𝜃−𝑖) < 𝑣(𝜃𝑖)
𝑎𝑖 .

We now determine conditions under which 𝑞 satisfies the monotonicity requirement.
Defining 𝐹 = 𝐹 ∘ 𝑣−1, and 𝛼 = 𝛼 ∘ 𝑣−1 leads to

𝔼𝜃−𝑖 [𝑞𝑖(𝜃𝑖, 𝜃−𝑖)] = 
𝑎−𝑖()𝑣(𝜃𝑖)

𝑣(𝜃𝑖 )
𝑎𝑖 ()

𝛼(𝑧)𝑓(𝑧)𝑑𝑧 + 𝐹 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗
⒭ 𝛽.

23



Differentiating with respect to 𝜃𝑖 we obtain

𝛼(𝑎−𝑖(𝜗)𝑣(𝜃𝑖))𝑓(𝑎−𝑖(𝜗)𝑣(𝜃𝑖)) ⒧𝑑𝑎−𝑖(𝜗)𝑑𝜃𝑖
𝑣(𝜃𝑖) + 𝑎−𝑖(𝜗)𝑣′(𝜃𝑖)⒭


>0: conditional on being the highest type you cannot lose

+ ⒧𝛽 − 𝛼 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗)
⒭⒭ 𝑓 ⒧𝑣(𝜃𝑖)𝑎𝑖(𝜗)

⒭ ⒧𝑣
′(𝜃𝑖)
𝑎𝑖(𝜗)

− 𝑑𝑎𝑖(𝜗)
𝑑𝜃𝑖

𝑣(𝜃𝑖)
𝑎2𝑖 (𝜗)

⒭ .


><0? Conditional on being lowest you may lose

A sufficient condition for this expression to be positive is that 𝑣′(𝜃𝑖)
𝑣(𝜃𝑖) ≥ [𝛽−𝛼(𝜃𝑖)]

′

𝛽−𝛼(𝜃𝑖) , that
is, virtual valuations increase fater than 𝛽 − 𝛼(𝜃𝑖). Without loss we can normalize 𝛽 = 1,
obtaining the condition in Table 1.

4.3 General Model

Once again, we maintain the assumption that agents’ types, 𝜃, are i.i.d drawn from the
same distribution 𝐹 ∈ ΔΘ, and Θ is an interval of real numbers. If agent 𝑖 is allocated
the product alone, her value for the product is 𝛽(𝜃𝑖, 𝜃−𝑖). If agents share the product,
agent i’s utility is 𝛼(𝜃𝑖, 𝜃−𝑖). Define 𝛾 = (𝛽, 𝛼) ∈ ℝ2. A symmetric allocation is a triple
of functions {𝑞𝑖}𝑖=1,2, 𝑞𝛼 ∶ Θ × Θ → [0, 1], such that, 𝑞𝛼 is symmetric and, for each
realization 𝜃, 𝜈 ∈ supp𝐹

𝑞1(𝜃1, 𝜃2) + 𝑞2(𝜃1, 𝜃2) + 𝑞𝛼(𝜃1, 𝜃2) ≤ 1. (F)

Given 𝜃1 and 𝜃2, we interpret 𝑞𝑖 as the probability that agent 𝑖 is allocated the good
alone, and 𝑞𝛼 as the probability that both agents are allocated the good together. Define
𝑞𝑖 = (𝑞𝑖, 𝑞𝛼). In a truthfully revealing direct mechanism, the expected utility of agent 𝑖
with type 𝜃 is

𝑈𝑖(𝜃) = 𝔼 [𝛾 (𝜃, 𝜃−𝑖) ⋅ 𝑞𝑖 (𝜃, 𝜃−𝑖) − 𝑡 (𝜃, 𝜃−𝑖)] .

We can then write the Bayesian incentive compatibility constraints as

𝑈𝑖(𝜃) − 𝑈𝑖(𝜃′) ≥ 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ,

for all 𝜃, 𝜃′. As usual, we say that an allocation is implementable if it satisfies Bayesian
Incentive Constraints.

Lemma 3. An allocation {𝑞1, 𝑞2, 𝑞𝛼} is implementable only if:
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1. 𝑈𝑖(𝜃) = 𝑈𝑖(𝜃) + ∫
𝜃
0 𝔼[𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)]𝑑𝜈 for all 𝜃 ∈ Θ;

2. 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ ⒧𝑞𝑖(𝜃, 𝜃−𝑖) − 𝑞𝑖(𝜃′, 𝜃−𝑖)⒭ ≥ 0 for all 𝜃, 𝜃′.

The lemma above provides necessary conditions for implementability, but these
conditions are, in general, not sufficient. We now provide sufficient conditions.

Assumption 2. Increasing differences: The difference between monopolist and duopolist
profits is increasing in own-type: 𝛽′(𝜃, 𝜃−𝑖) − 𝛼′(𝜃, 𝜃−𝑖) ≥ 0.

Proposition 7. Let Assumption 2 hold. When 𝑞𝑖 and 𝑞𝑖 + 𝑞𝛼 are increasing, condition 1 in
Lemma 3 is sufficient for implementability.

We can write expected transfers as 𝔼[𝛾(𝜃, 𝜃−𝑖) ⋅ 𝑞(𝜃, 𝜃−𝑖) − 𝑈𝑖(𝜃)]. Making use of the
usual integration by parts transformation, we obtain that profits are


𝑖


𝜃
𝔼−𝑖 [( 𝛾(𝜃, 𝜃−𝑖) −

1 − 𝐹(𝜃)
𝑓(𝜃) 𝛾′(𝜃, 𝜃−𝑖) )⋅𝑞𝑖(𝜃, 𝜃−𝑖)] 𝑓(𝜃)𝑑𝜃. (5)

Assumption 3. We make the following assumptions on virtual valuations:

Strong Regularity. 𝑣𝛽(𝜃, 𝜈), 𝑣𝛼(𝜃, 𝜈) are increasing in 𝜃 for all 𝜈.

Virtual Gains. 𝑣′𝛽(𝜃, 𝜈) ≥ 𝑣′𝛼(𝜃, 𝜈) + 𝑣′𝛼(𝜈, 𝜃) ≥ max{0, 𝑣𝛽,𝜈(𝜃, 𝜈)}

Proposition 8. Under Assumption 2 and Assumption 3, the revenue-maximizing mecha-
nism has allocations:

𝑞𝑖(𝜃, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑣𝛽(𝜃, 𝜃−𝑖) > max 𝑣𝛼(𝜃, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃), 𝑣𝛽(𝜃−𝑖, 𝜃)

0 otherwise
(6)

𝑞𝛼(𝜃, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if max{𝑣𝛽(𝜃, 𝜃−𝑖), 𝑣𝛽(𝜃−𝑖, 𝜃)} < 𝑣𝛼(𝜃, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃)

0 otherwise
(7)

Proposition 8 completes the characterization for the general model. In Section ??,
we explore an application that is feasible with the general model but would have been
unmanageable with the baseline model.
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5 Applications

5.1 Selling Information in Financial Markets

We consider the market for one risky security with payoff 𝑣 ∈ {0, 1}. Trade happens at
time 0, and the payoff of the asset is revealed at time 1. There are 𝑁 > 2 traders in the
market: 𝑁 − 2 being liquidity traders and 2 rational investors. Our trading protocol
is inspired by Glosten and Milgrom (1985). At time 0, perfectly competitive market
makers publicly post a price at which they stand ready to buy (bid, 𝑏) and sell (ask,
𝑎) the security. Subsequently, each trader interested in buying or selling is randomly
matched with a market maker, and they trade 1 unit of the security at the posted price.

The payoff of a trader with marginal utility of wealth 𝜃 who buys one unit of the
asset at the ask price is 𝜃(𝑣 −𝑎). If the same buyer were to sell the asset at the bid price,
the payoffwould be 𝜃(𝑏−𝑣). We assume that themarginal utility of wealth, 𝜃, is private
information and symmetrically distributed according to a continuous distribution 𝐹.
Rational investors trade to maximize their expected payoff. Liquidity traders trade
randomly: for simplicity, we assume that liquidity traders are always willing to trade,
and buy or sell with the same probability.

At time 0, all traders and market makers share a common prior assigning equal
probability to 𝑣 ∈ {0, 1}. Before prices are posted, an information seller (the principal)
who is fully informed about the value of the security can sell that information to one
or both of the rational traders. If only one of the rational investors is informed, it
will be optimal for the uninformed rational investor to not trade, so the proportion
of informed investors on the pool of traders is 𝜂 = 1

𝑁−1 . If both rational investors are
informed, then all traders are active in the market and that fraction is 𝜂 = 2

𝑁 . We solve
for the equilibrium in the financial market given 𝛼.

Market makers are competitive, but they are aware of adverse selection, which will
give rise to a bid-ask spread in equilibrium. For example, upon observing a buying
demand, a market maker knows that there is a probability that they are observing an
informed trader, which implies that the asset value is 1. To protect themselves against
that possibility, they raise their ask price. In equilibrium we must have:

𝑎 = 𝔼[𝑣|buy] = 1 + 𝜂
2 𝑏 = 𝔼[𝑣|sell] = 1 − 𝜂

2

Therefore, if there is only one informed investor, her payoff is:
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𝜋𝑀(𝜃) = 1
2
𝑁 − 2
𝑁 − 1𝜃 ∝ 𝜃,

and the payoff of an informed investors when both are informed is:

𝜋𝐷(𝜃) = 𝑁 − 1
𝑁 𝜋𝑀(𝜃).

Therefore, this applicationfits into our baselinemodel, and the revenue-maximizing
allocation of information follows Proposition 1.

5.2 Horizontally Differentiated Products

Consider a uniform distribution of consumers in the interval [0, 1]. Two potential fran-
chisees are positioned at the ends. A franchisor, henceforth referred to as the principal,
contemplates licensing a franchise to the franchisees, henceforth referred to as firms,
positioned at 0, to the one positioned at 1, or to both of them. Each firm has private
information regarding the quality of the products they will be able to offer. Let these
qualities be uniformly distributed 𝑞𝑗 ∼ 𝑈[𝑞, 𝑞], with 𝑗 ∈ {0, 1}, where 𝑗 indicates their
position in the interval. If a customer decides to purchase a good from a firm, say from
firm 𝑗 = 0, their utility will be 𝑞𝑗 − 𝑝𝑗 − 𝛿𝑥, where 𝑝𝑗 represents the price the firm
charges, 𝛿 represents the travel costs, while 𝑥 represents the consumer’s position in the
unit interval.

Figure 6: Hotelling Application

One Active Franchisee

0 1

𝑞

𝑞
𝑞0

̃𝑥 = 𝑞0−𝑝0
𝛿

Two Active Franchisees

0 1

𝑞

𝑞
𝑞0

𝑞

𝑞

𝑞1

̃𝑥 = (𝑞0−𝑝0)−(𝑞1−𝑝1)+𝛿
2𝛿

Notes: The figure above displays...

If the principal decides to license a franchise to only one firm, say 𝑗 = 0, then this
firm will be a monopolist. To find the profit-maximizing price, we first need to find
the marginal consumer, the last consumer who justifies the travel cost. This will be
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the consumer positioned at ̃𝑥, where ̃𝑥 = {𝑥|𝑞𝑗 − 𝑝𝑗𝛿𝑥 = 0}. The firm then maximizes
max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗), and finds it optimal to charge 𝑝𝑀

𝑗 = 𝑞𝑗
2 , where𝑀 represents their monop-

olistic status. The marginal consumer will thus be ̃𝑥(𝑝𝑀
𝑗 ) = 𝑞𝑗

2𝛿 , while the firms profits

will be 𝜋𝑀
𝑗 = 𝑞2𝑗

4𝛿 .
If the principal opts to grant franchises to both firms, then consumers compare the

quality, price, and distance from each firm before deciding which one to buy from.
To the buyers, this is the externality caused by providing two franchises. Although
a franchise can be replicated at no cost, it intensifies competition, which may reduce
profits by driving down the prices, leading to lower bids and potentially decreased
profitability. With two active firms, the marginal client, the client indifferent from
purchasing from 𝑗 = 0 or 𝑗 = 1, is

̃𝑥 = 𝑥𝑞0 − 𝑝0 − 𝛿𝑥 = 𝑞1 − 𝑝1 − 𝛿(1 − 𝑥) → ̃𝑥 = (𝑞0 − 𝑝0) − (𝑞1 − 𝑝1) + 𝛿
2𝛿 ,

Each firm then maximizes max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗 , 𝑝−𝑗), leading to the following optimal prices

𝑝𝐷
0 = 𝑞0 − 𝑞1 + 3𝛿

3 , 𝑝𝐷
1 = 𝑞1 − 𝑞2 + 3𝛿

3 .

And duopoly profits of

𝜋𝐷
0 = (𝑞0 − 𝑞1 + 3𝛿)2

18𝛿 , 𝜋𝐷
1 = (𝑞1 − 𝑞0 + 3𝛿)2

18𝛿 .

Importantly, note that the duopoly profits are not simply a fraction𝛼 of themonopoly
profits, nor can they be expressed in a multiplicative form as a function of the competi-
tors type 𝑞−𝑗 . Thus, the machinery developed in Section 4 is necessary to handle this
example. It is trivial to check that for the right 𝑞, 𝑞, and 𝛿 parameters, all sufficient
conditions specified in Section 4 are met. Thus, the principal can maximize expected
profits by simply running an interval auction.

6 Conclusions

This paper explores the optimal licensing strategy for a seller facing downstream com-
petitors with private information, relevant in various market contexts, such as fran-
chise operations, patent licensing, and information sales, to name a few. Stemming
from asymmetric information, we characterize inefficiencies that do not arise in con-
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ventional auctions, leading to scenarios where the seller may either over- or under-
provide the good. We link these inefficiencies to the distribution of buyer valuations.
We propose an interval auction as the revenue-maximizing mechanism, where the allo-
cation decision is based not only on the highest bid but on the distribution of all bids.
If bids are closely clustered, the mechanism favors selling to multiple bidders; if bids
are widely dispersed, exclusive licensing to the highest bidder becomes optimal. In a
dynamic setting where buyers arrive sequentially, we analyze the timing of licensing
decisions and show that a seller may delay licensing or issue a license immediately to
an available buyer. Furthermore, we show that the decision to offer an exclusive li-
cense depends on the seller’s relative patience compared to the buyers; exclusivity is
promised only when the seller is less patient. Lastly, we explore sufficient conditions
that allow for a framework where buyer valuations are interdependent.
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7 Appendix

7.1 Unknown Market Structure: Reported Interval Auction

We now consider an implementation of the optimal mechanism identified in Section
2.2 when the seller does not know the market structure, namely 𝛼, but the buyers do.
Consider the following reported interval auction. Both bidders are asked to submit in-
tervals [𝑙𝑖, ℎ𝑖]. From these intervals, the principal calculates

�̂�𝑖 =
𝑣(ℎ𝑖)

𝑣(ℎ𝑖) + 𝑣(𝑙𝑖)
, �̂�𝑖 = 𝑣−1 ⒧ �̂�𝑖

1 − �̂�𝑖
𝑣(𝑙𝑖)⒭

Where �̂�𝑖 and �̂�𝑖 represent the principal’s estimated 𝛼 and 𝜃𝑖 respectively, based on the
interval submitted by bidder 𝑖, while 𝛾 is some constant. The allocation rules are as
follows: with equal probability, the principal considers �̂�𝑖 and [𝑙−𝑖, ℎ−𝑖] or �̂�𝑗 and [𝑙𝑖, ℎ𝑖]
to determine the allocation. Consider without loss that �̂�𝑖 and [𝑙−𝑖, ℎ−𝑖] were chosen.

1. If �̂�𝑖 falls in [𝑙−𝑖, ℎ−𝑖], both bidders are allocated the good and pay �̂�−𝑖𝑙−𝑖.

2. If �̂�𝑖 > ℎ−𝑖, the good is allocated to bidder 𝑖 exclusively who pays �̂�−𝑖𝑙−𝑖+(1−�̂�−𝑖)ℎ−𝑖,
while bidder −𝑖 pays nothing.

3. If �̂�𝑖 < 𝑙−𝑖, the good is allocated to bidder −𝑖 exclusively who pays �̂�𝑖𝑙𝑖 + (1 − �̂�𝑖)ℎ𝑖,
while bidder 𝑖 pays nothing.

Note that if −𝑖 submits interval [𝜏(𝜃−𝑖), 𝜏(𝜃−𝑖)], then

�̂�−𝑖 =
𝑣(𝜏(𝜃−𝑖))

𝑣(𝜏(𝜃−𝑖)) + 𝑣(𝜏(𝜃−𝑖))
= 𝛼,

�̂�−𝑖 = 𝑣−1 ⒧ �̂�𝑖
1 − �̂�𝑖

𝑣(𝜏(𝜃−𝑖))⒭ 𝛾 + 𝑣−1 ⒧1 − �̂�𝑖
�̂�𝑖

𝑣(𝜏(𝜃−𝑖))⒭ (1 − 𝛾) = 𝜃−𝑖.

Proposition 9. Under assumptions 1, 2, and 3, the optimal mechanism is implemented as
a Bayesian Nash equilibrium by a reported interval auction.

Proof of Proposition 9

Assume that bidder −𝑖 reports truthfully, so [𝜏(𝜃−𝑖), 𝜏(𝜃−𝑖)]. Start by assuming that bid-
der 𝑖 reports [𝜏(𝜃𝑖), 𝜏(𝜃𝑖)]. We will see if there is ever a profitable deviation from this
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report. First, note that deviations that do not change the allocations do not change
payoffs either. Thus, from such deviations, the bidder stands to gain nothing. In what
follows, we now consider deviations that may change the allocation.

Case 1: 𝜃𝑖 < 𝜏(𝜃−𝑖)

Deviation 1.1 Consider misreporting the interval upwards so that both bidders are
allocated the good. The utility of bidder 𝑖would have been 0 but now is𝛼𝜃𝑖−𝛼𝜏(𝜃−𝑖) < 0.
This deviation hurts the bidder.

Deviation 1.2 Consider misreporting the interval upwards so that bidder 𝑖 is allo-
cated the good exclusively. The utility of bidder 𝑖 would have been 0 but now is 𝜃𝑖 −
𝛼𝜏(𝜃−𝑖) − (1 − 𝛼)𝜏(𝜃−𝑖) < 0. The inequality follows by substituting 𝜏(𝜃−𝑖) with 𝜏(𝜃−𝑖) and
once again realizing that 𝜃𝑖 < 𝜏(𝜃𝑗). This deviation hurts the bidder.

Case 2: 𝜏(𝜃𝑗) < 𝜃𝑖 < 𝜏(𝜃𝑗)

Deviation 2.1 Consider misreporting the interval downwards so that bidder 𝑖 is ex-
cluded. The utility of bidder 𝑖 would have been 𝛼𝜃𝑖−𝛼𝜏(𝜃𝑗) but now is 0. This deviation
hurts the bidder.

Deviation 2.2 Consider misreporting the interval upwards so that bidder 𝑖 is allo-
cated the good exclusively. The utility of bidder 𝑖 would have been 𝛼𝜃𝑖 − 𝛼𝜏(𝜃𝑗) but is
now 𝜃𝑖−𝛼𝜏(𝜃𝑗)−(1−𝛼−𝑖)𝜏(𝜃𝑗). The bidder changed his utility by (1−𝛼)𝜃𝑖−(1−𝛼)𝜏(𝜃𝑗) < 0.
This deviation hurts the bidder.

Case 3: 𝜏(𝜃𝑗) < 𝜃𝑖

Deviation 3.1 Consider misreporting the interval downwards so that both bidders
are allocated the good. The utility of bidder 𝑖 would have been 𝜃𝑖 −𝛼𝜏(𝜃𝑗)−(1−𝛼−𝑖)𝜏(𝜃𝑗)
but now is 𝛼𝜃𝑖 − 𝛼𝜏(𝜃𝑗). The bidder changed his utility by (1 − 𝛼)𝜏(𝜃𝑗) − (1 − 𝛼)𝜃𝑖 < 0.
This deviation hurts the bidder.
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Deviation 3.2 Consider misreporting the interval downwards so that bidder 𝑖 is ex-
cluded. The utility of bidder 𝑖 would have been 𝜃𝑖 − 𝛼𝜏(𝜃𝑗) − (1 − 𝛼−𝑖)𝜏(𝜃𝑗) but now is 0.
The bidder changed his utility by −𝜃𝑖 + 𝛼𝜏(𝜃𝑗) + (1 − 𝛼−𝑖)𝜏(𝜃𝑗) < 0. This deviation hurts
the bidder.

There are either deviations that do not have any impact or deviations that hurt bid-
der 𝑖. Because bidder 𝑖 does not know the interval reported by bidder −𝑖, in expectation,
any deviation will hurt him. Thus, the bidder does not find it beneficial to deviate from
reporting [𝜏(𝜃𝑖), 𝜏(𝜃𝑖)]. ■

7.2 Proofs

Proof of Proposition 2

We can parameterize the problem by 𝛼, 𝛽 > 0, where 𝛼 is the payoff themultiplier when
bot agents are served, while 𝛽 is the multiplier when they are the only ones receiving
the product. Recall, 𝛼 ≤ 𝛽, and the payoff of not receiving the product is zero.

By ignoring constraint 1, the problem of the principal is a linear programming prob-
lem, which can be solved by an extreme point of the polytope𝒬: that is, by a degenerate
allocation. Moreover, the problem can be solved realization by realization.

Fix 𝜃 and assume, without loss of generality, 𝜃1 ≥ 𝜃2. By Assumption 1, virtual val-
uations are positive, so at least one agent is served, thus any allocation includes buyer 1.
Then, in the first best allocation—under symmetric information—the principal serves
both agents only if

𝛼(𝜃1 + 𝜃2) ≥ 𝛽𝜃1 ⟺ 𝛼
𝛽 − 𝛼 ≥ 𝜃1

𝜃2 . (8)

By contrast, the optimal mechanism serves both agents only if

𝛼 ⒧𝑣(𝜃1) + 𝑣(𝜃2)⒭ ≥ 𝛽𝑣(𝜃1) ⟺ 𝛼
𝛽 − 𝛼 ≥ 𝑣(𝜃1)

𝑣(𝜃2) . (9)

Therefore, the allocation is efficient for all vectors 𝜃 if and only if 𝜃1

𝜃2 = 𝑣(𝜃1)
𝑣(𝜃2) , for all

𝜃2 ≤ 𝜃1, which happens if and only if 𝑣 is linear. We complete the proof by showing
that 𝑣 is linear if and only if 𝐹𝑖 is the Pareto distribution. To see that, assume 𝑣(𝜃) = 𝜆𝜃,
𝜆 > 0. We then have:

𝜃 − 1 − 𝐹(𝜃)
𝑓(𝜃) = 𝜆𝜃.
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Solving this differential equation yields the unique solution:

𝐹(𝜃) = 1 + 𝑘𝜃− 1
1−𝜆 .

The only family of CDFs satisfying this equation is the Pareto family.
Next, we provide the proof of under-provision. The proof for over-provision is sym-

metric. Note that 𝑣(𝑥) = ⒧1 − 1−𝐹(𝑥)
𝑓(𝑥)𝑥 ⒭ 𝑥 = (1 − 1

𝜆(𝑥) )𝑥. Without loss of generality, let
𝜃1 ≥ 𝜃2. First, assume that 𝜆 is increasing. Then, if the first best allocates to only one
agent:

𝑣(𝜃1)
𝑣(𝜃2)

=
1 − 1

𝜆(𝜃1)
1 − 1

𝜆(𝜃2)

𝜃1
𝜃2

≥ 𝜃1
𝜃2

≥ 𝛼
1 − 𝛼,

and the revenue-maximizing mechanism also allocates to only one agent. Thus, the
revenue-maximizing mechanism can only under-provide.

For the converse, assume the revenue-maximizing mechanism under-provides for
all 𝛼 ∈ [0, 1]. Fix 𝜃1 > 𝜃2 and let 𝛼 be such that:

𝛼
1 − 𝛼 = 𝜃1

𝜃2
≤

1 − 1
𝜆(𝜃1)

1 − 1
𝜆(𝜃2)

𝜃1
𝜃2

,

where the inequality follows from the assumption. We thus have 𝜆(𝜃1) ≥ 𝜆(𝜃2).
Because 𝜃1 > 𝜃2 were arbitrary, the result follows. ■

Proof of Proposition 3

Start with any mechanism that implements the optimal allocation and charges 𝑡𝛼(𝜃−𝑖)
in case the agent shares, and 𝑡𝛽(𝜃−𝑖) if the agent does not share. It is clear that, con-
ditional on an allocation, bids cannot depend on own-type under Dominant-Strategy
implementation. In what follows I omit the argument of 𝑡𝛼, 𝑡𝛽 whenever possible.

Case 1 𝜃2 ≤ 𝑔−1(𝜃2) < 𝜃1. Agent 1 is allocated the good alone. There is clearly no
benefit in deviating to a higher bid, as that does not change either the allocation or the
payment. So consider a deviation to a lower bid that makes the seller allocate the goods
to both. Then, it must be the case that:

𝜃1𝛽 − 𝑡𝛽 ≥ 𝜃1𝛼 − 𝑡𝛼 ⟺ 𝑡𝛽 − 𝑡𝛼 ≤ 𝜃1(𝛽 − 𝛼).

Because this has to hold for all 𝜃1 in this set, we have the first constraint:
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𝑡𝛽 − 𝑡𝛼 ≤ 𝑔−1(𝜃2)(𝛽 − 𝛼). (10)

A similar argument holds for deviations that exclude agent 1. Because under exclu-
sion there are no payments, we have:

𝑡𝛽 ≤ 𝑔−1(𝜃2)𝛽. (11)

Case 2 𝑔(𝜃2) ≤ 𝜃1 < 𝑔−1(𝜃2). In this case, both agents get the product. The deviation
to higher types is avoided if:

𝜃1𝛼 − 𝑡𝛼 ≥ 𝜃1𝛽 − 𝑡𝛽 ⟺ 𝑡𝛽 − 𝑡𝛼 ≥ 𝜃1(𝛽 − 𝛼).

For this second constraint to hold for any 𝜃1 in this set, we have: 𝑡𝛽 −𝑡𝛼 ≥ 𝑔−1(𝜃2)(𝛽 −
𝛼). Combining this equality with 10, we obtain an expression for the difference in pay-
ments:

𝑡𝛽 − 𝑡𝛼 = 𝑔−1(𝜃2)(𝛽 − 𝛼). (12)

Conversely, the downward deviation is avoided if 𝑡𝛼 ≤ 𝜃1𝛼, which is satisfied for all
𝜃1 in this set only if 𝑡𝛼 ≤ 𝑔(𝜃2)𝛼.

Case 3 𝜃1 < 𝑔(𝜃2). We are finally in the case in which 1 is excluded. For this to
be optimal we have 𝑡𝛽 ≥ 𝜃1𝛽 and 𝑡𝛼 ≥ 𝜃1𝛼, which imply, respectively, 𝑡𝛽 ≥ 𝑔(𝜃2)𝛽,
and 𝑡𝛼 ≥ 𝑔(𝜃2)𝛼. The last inequality pins down 𝑡𝛼 given the discussion in the previous
paragraph. We have then proved that 𝑡𝛼 and 𝑡𝛽 − 𝑡𝛼 are pinned down by dominant-
strategy ICs, and satisfy the mechanism in the statement. Therefore, this mechanism
not only implements the optimal allocation in dominant strategies, but it also is the
only one to do so conditional on the excluded agent not paying anything.

Proof of Proposition 5

Define 𝑥1 and 𝑥2 as follows

𝑈1(𝜃1) = 𝔼𝜃2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗(1 − 𝜆)𝑗𝑞1𝑗 (𝜃1) +
∞


𝑗=0

𝜆(1 − 𝜆)𝑗
∞


𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)


𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜃1 − 𝑟1(𝜃1),
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𝑈2(𝜃1, 𝜃2, 𝑎2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗𝑞2𝑎2+𝑗(𝜃1, 𝜃2, 𝑎2)


𝑥2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜃2 − 𝑟2(𝜃1, 𝜃2).

𝔼[𝑟1(𝜃1, 𝜃2) +
∞


𝑗=0

𝜌𝑗+1𝜆(1 − 𝜆)𝑗𝑟2(𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)]

Using integration by parts, the seller maximizes:

𝔼
⎡⎢⎢⎢⎢⎣
𝑣(𝜃1)𝑥1(𝜃1, 𝜃2) + 𝜌

∞


𝑖=0

𝜌𝑖𝜆(1 − 𝜆)𝑖𝑣(𝜃2)𝑥2(𝜃1, 𝜃2, 𝑎2 = 𝑖 + 1)
⎤⎥⎥⎥⎥⎦

= 𝔼
∞


𝑗=0

𝛿𝑗(1 − 𝜆)𝑗𝑞1𝑗 (𝜃𝑖)𝑣(𝜃1) +
∞


𝑗=0

𝜆(1 − 𝜆)𝑗 
𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃𝑖, 𝑎2 = 𝑗 + 1)𝑣(𝜃1)+

∞


𝑗=0

𝜌𝑗+1𝜆(1 − 𝜆)𝑗
∞


𝑘=𝑗+1

𝛿𝑘

𝛿𝑗+1𝑞
2
𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃2)

So if we fix any 𝑗, 𝑎2 = 𝑗 + 1 and any time 𝑘 > 𝑗 + 1 we have that the seller solves,
given an irreversibility constraint 𝑞:

max
𝑞1≥𝑞

𝜆(1 − 𝜆)𝑗𝛿𝑘 ⒧𝑞1𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃1) +
𝜌𝑗+1

𝛿𝑗+1 𝑞
2
𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃2)⒭ .

When the irreversibility constraint does not bind, we have:

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 1 ⟺ 𝑣(𝜃1)
𝑣(𝜃2)

≥ ⒧𝜌𝛿 ⒭
𝑎2 𝛼

1 − 𝛼,

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 𝛼 ⟺ ⒧𝜌𝛿⒭
𝑎2 1 − 𝛼

𝛼 ≤ 𝑣(𝜃1)
𝑣(𝜃2)

≤ ⒧𝜌𝛿 ⒭
𝑎2 𝛼

1 − 𝛼,

and

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 𝛼𝑞 ⟺ ⒧𝜌𝛿⒭
𝑎2 1 − 𝛼

𝛼 ≥ 𝑣(𝜃1)
𝑣(𝜃2)

.

It is clear that, because of discounting, the seller has incentives to frontload the solo
allocation of the good for agent 1, 𝑞1(𝜃) before the arrival of agent 2. By irreversibility,
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that allocation cannot decrease until agent 2 arrives, so it is without loss of generality
to consider an 𝑞1𝑡 (𝜃) = 𝑞. The profit of the seller is then:

1
1 − 𝛿(1 − 𝜆)𝑞𝑣(𝜃1) +

∞


𝑗=0

𝜆
1 − 𝛿(1 − 𝜆)𝑗

𝔼𝜃2 max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ , 𝑞𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ + (1 − 𝑞)𝜌𝑗+1𝑣(𝜃2)

This function is affine in q. To see that, fix any 𝜃2. Note that the third term in the
max is themaximumof the three for 𝑞 = 0 if and only if it is also themaximum for 𝑞 = 1.
In other words, for a fixed 𝜃2, either the max does not change with 𝑞, in which case the
expression above is affine in 𝑞; or the max changes linearly in 𝑞, so the expression above
is again affine in q. Thus, once one takes expectation in 𝜃2, the expression above is still
affine in 𝑞. Therefore, 𝑞 ∈ {0, 1}.

Having established the possible values of 𝑞, we next show that 𝑞𝑤(𝜃1) is monotoni-
cally decreasing. It is optimal to choose 𝑞 = 0 instead of 𝑞 = 1 if

∞


𝑗=0

𝜆
1 − 𝛿(1 − 𝜆)𝑗 𝔼𝜃2 max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ , 𝜌𝑗+1𝑣(𝜃2)

−max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭

− 1
1 − 𝛿(1 − 𝜆)𝑣(𝜃1) ≥ 0

At 𝜃1 = 𝜃, the difference within the expectation operator is 0, implying that the
whole term is negative. Since the inequality does not hold the optimal decision is 𝑞 = 1.
At 𝜃1 = 𝜃, the inequality cannot be generally signed. Notice that if 𝑣(𝜃) ≤ 0, then we
obtain that it is always optimal to wait for 𝜃1 = 𝜃. Thus, for high enough 𝜃1 the optimal
𝑞 surely becomes 1, but might be 0 or 1 for low values of 𝜃1. Fix a 𝜃2 value, and note that
the difference between the max expressions weakly decreases as 𝜃1 increases, while the
𝑣(𝜃1) term outside also decreases, leading to a decrease of the total expression. Since
this holds for any 𝜃2 value, it also holds in expectation. Thus, 𝑞 is either 1 to begin with,
or goes from 0 to 1 as 𝜃1 increases. ■

36



Proof of Proposition 6

We can establish the inefficiencies related to the dynamic revenue-maximizing mecha-
nism. To do that, start by noticing that, in that mechanism, for a fixed 𝜃1, the designer
waits if and only if:

1 − 𝛿(1 − 𝜆)
1 − 𝛿 𝔼𝑎,𝜃2 max𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎 𝑣(𝜃2)

𝑣(𝜃1)
⒭ , 𝜌𝑎 𝑣(𝜃2)

𝑣(𝜃1)


−max𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎 𝑣(𝜃2)
𝑣(𝜃1)

⒭

≥ 1,

whereas in the first best, the designer waits if and only if:

1 − 𝛿(1 − 𝜆)
1 − 𝛿 𝔼𝑎,𝜃2 max 𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎𝜃2

𝜃1
⒭ , 𝜌𝑎𝜃2

𝜃1


−max 𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎𝜃2
𝜃1

⒭

≥ 1.

Notice first that the expression inside the expectation on the left-hand side of the
inequalities above is different from zero only if 𝜃2 > 𝜃1. We focus on that case from now
on. Consider the function 𝐻(𝜙) = max 𝛿𝑎, 𝛼 (𝛿𝑎 + 𝜌𝑎𝜙) , 𝜌𝑎𝜙 − max 𝛿𝑎, 𝛼 (𝛿𝑎 + 𝜌𝑎𝜙) .
This function is increasing in 𝜙.

If 𝑣(𝜃2)
𝑣(𝜃1) ≥

𝜃2
𝜃1 for 𝜃2 > 𝜃1, then, conditional on 𝜃1, the distribution over (𝑣(𝜃2)𝑣(𝜃1) , 𝑎) first-

order stochastically dominate the distribution over (𝜃2𝜃1 , 𝑎). Hence, for all 𝜃1’s such that
the designer chooses to wait in the first-best, she also chooses to wait in the second-best.
Notice that this is the same condition as underprovision for all 𝛼 values (namely, 𝜆 is
decreasing). ■

Proof of Lemma 3

By switching the order of 𝜃 and 𝜃′ in the BIC inequality above and putting the two
together we obtain:
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𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ≤ 𝑈𝑖(𝜃) − 𝑈𝑖(𝜃′) ≤ 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃, 𝜃−𝑖)

Divide all three terms by 𝜃 −𝜃′ and take the limit as 𝜃′ → 𝜃 to obtain condition (1).
By combining the first and second inequality, we obtain condition (2):

𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ ⒧𝑞𝑖(𝜃, 𝜃−𝑖) − 𝑞𝑖(𝜃′, 𝜃−𝑖)⒭ ≥ 0.

■

Proof of Proposition 7

Start by writing 𝛾 = (𝛽 − 𝛼, 𝛼), and 𝑞𝑖 = 𝑞𝑖, 𝑞𝑖 + 𝑞𝛼. Assume first 𝜃 > 𝜃′. Then:

𝑈(𝜃) − 𝑈(𝜃′) = 
𝜃

𝜃′
𝔼 𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖) 𝑑𝜈

= 𝔼
⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦
= 𝔼

⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦

≥ 𝔼
⎡⎢⎢⎢⎣


𝜃

𝜃′
𝛾′(𝜈, 𝜃−𝑖)𝑑𝜈 ⋅ 𝑞𝑖(𝜃

′, 𝜃−𝑖)
⎤⎥⎥⎥⎦

= 𝔼 ⒧𝛾(𝜃, 𝜃−𝑖) − 𝛾(𝜃′, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′, 𝜃−𝑖) ,

where the first equality comes from condition 1, the second equality switches the
order of integration, the third equality rewrites the integrand using the definitions of
𝛾 and 𝑞, and the inequality uses the fact that, by Assumption 2, both entris of 𝛾′ are
positive and, by the statement of the result, both entries of 𝑞𝑖 are increasing.

The symmetric argument holds for 𝜃′ > 𝜃, so we proved that BIC is satisfied. ■

Proof of Proposition 8

We solve the relaxed problem of maximizing profits subject to condition 1 in Lemma 3
and feasibility, (F). By usual arguments, the solution to that relaxed problem is the one
above. We next show that the solution above satisfies incentive compatibility.

We start by proving 𝑞𝑖 is increasing in 𝜃 for any 𝜃−𝑖. Fix 𝜃. By the the third inequality
on virtual gains there is a threshold in the opponent’s type space, call it 𝑥, such that
the allocation rule 𝑞𝑖(𝜃, 𝜃−𝑖) is one if and only if 𝜃−𝑖 < 𝑥. That threshold satisfies:

38



𝑣𝛽(𝜃, 𝑥) = 𝑣𝛼(𝜃, 𝑥) + 𝑣𝛼(𝑥, 𝜃)

By total differentiation, we obtain:

⒧𝑣′𝛽(𝜃, 𝑥) − ⒧𝑣′𝛼(𝜃, 𝑥) + 𝑣𝛼,𝜈(𝑥, 𝜃)⒭⒭
>0 by virtual gains,inequality 1

𝑑𝜃 = − ⒧𝑣𝛽,𝜈(𝜃, 𝑥) − ⒧𝑣𝛼,𝜈(𝜃, 𝑥) + 𝑣′𝛼(𝑥, 𝜃)⒭⒭
<0 by virtual gains, inequality 2

𝑑𝑥.

Thus, the threshold 𝑥 is increasing with 𝜃. Then, if 𝑞𝑖(𝜃, 𝜃−𝑖) = 1, and 𝜃′ > 𝜃, it must
be that 𝑞𝑖(𝜃′, 𝜃−𝑖) = 1. Thus, 𝑞𝑖 is increasing, as we wanted to prove.

We now show that 𝑞𝛼 + 𝑞𝑖 is increasing. Again fix any 𝜃. Once more, using virtual
gains it is easy to see that there is a threshold in the adversaries’ type space, 𝑦 > 𝜃 > 𝑥
such that 𝑞𝛼 + 𝑞𝑖 = 1 if and only if 𝜃−𝑖 < 𝑦. 𝑦 is defined by:

𝑣𝛽(𝑦, 𝜃) = 𝑣𝛼(𝜃, 𝑦) + 𝑣𝛼(𝑦, 𝜃).

Using total differentiation again:

⒧𝑣′𝛽(𝑦, 𝜃) − 𝑣𝛼,𝜈(𝜃, 𝑦) − 𝑣′𝛼(𝑦, 𝜃)⒭
>0 by virtual gains, inequality 1

𝑑𝑦 = − ⒧𝑣𝛽,𝜈(𝑦, 𝜃) − 𝑣′𝛼(𝜃, 𝑦) − 𝑣𝛼,𝜈(𝑦, 𝜃)⒭
<0 by virtual gains, inequality 2

𝑑𝜃

Again, the threshold 𝑦 grows. So if 𝑞𝑖(𝜃, 𝜃−𝑖) + 𝑞𝛼(𝜃, 𝜃−𝑖) = 1, the same holds for
𝜃′ > 𝜃, which guarantees that this sum is increasing.

We have now proved 𝑞𝑖 and 𝑞𝑖 +𝑞𝛼 are increasing, and we are thus in the conditions
of Proposition 2.

■
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