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1 Introduction

Across various contexts, updating beliefs is critical in the decision-making process. In the last

few decades, economists and psychologists have made significant progress in understanding how

people engage with new information. In many situations, the standard Bayesian updating frame-

work accurately describes the evolution of beliefs (Grether, 1978; Camerer, 1987; Charness and

Levine, 2005).1 At the same time, there are frequent and consistent deviations from Bayesian up-

dating. These deviations persist even when people have ample opportunities to learn (Esponda

et al., 2023) and when stakes are very high (Gneezy et al., 2023). Moreover, these deviations are

prevalent even among professionals who frequently deal with such issues (Benjamin, 2019). What

makes some belief-updating tasks more difficult and more mistake-prone than others? This is the

focus of our paper.

We present findings from a series of lab experiments involving belief updating tasks. Starting

with the simplest environment, we consider a setting where the state is binary and both states

are equally likely. A decision-maker receives two simultaneous binary signals and reports her

posterior about the state. Our analysis, conducted across various parameters, empirically docu-

ments how deviations from Bayesian predictions, termed mistakes, depend on signals’ precisions.

We observe two empirical regularities: first, participants make larger mistakes as the accuracy

of both signals increases, even when the gap between signal accuracies remains fixed; second,

participants make larger mistakes as the gap between signal accuracies widens. We show these

regularities closely track non-linearities arising in Bayesian updating. The difficulty of integrat-

ing information from signals with different accuracies increases when Bayesian posteriors change

significantly with small changes in signal accuracies. Regions in which these non-linearities are

more pronounced are precisely the regions in which people make larger mistakes, unable to fully

incorporate the extent to which one signal is more informative than the other.2

We explore several approaches that predict the two empirical regularities described above.

The first approach links the difficulty of the updating task with the nonlinearity of the Bayesian

posterior. This approach has the advantage of measuring the difficulty based on task primitives

without relying on a specific behavioral model. The other two models we consider are behavioral.

The first revisits Grether (1980), widely used in empirical studies of belief updating, and incorpo-

rates minor changes to include the aforementioned concepts. The second proposes an alternative

model where an agent’s inability to fully follow changes in the second derivative leads to only

partial reactions to nonlinearities.

We next explore the relationship between task difficulty related to nonlinearities and alterna-

tive behavioral models predicting mistakes in updating, recently explored in the literature. The

first suggests that the proximity of Bayesian prediction to corner belief (either 0% or 100%) is what

1Not only humans employ Bayesian updating! Valone (2006) reviews experiments involving animals and concludes
that a variety of them, across different ecological contexts, behave in a manner consistent with Bayesian updating.

2Throughout the paper, we associate mistakes participants make—the discrepancy between observed and Bayesian
predicted posteriors—with task difficulty rather than task complexity. However, these two terms can be used inter-
changeably. The task becomes difficult due to the increase in complexity resulting from pronounced non-linearities.
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drives mistakes. As we show in Section 4.2, participants have no issue arriving at the posteriors

very close to the corner as long as they have only one signal to incorporate.3 It is the presence of

multiple sources of information that creates conditions for the task to become difficult. The sec-

ond alternative explanation is the compression effect and its sensitivity to cognitive uncertainty

(Enke and Graeber, 2023). We utilize the dataset collected by the above authors and show that

controlling for cognitive uncertainty, the level of and gap between signal precisions remains a

significant driver of participants’ mistakes. We also demonstrate how our findings are different

from a model of cognitive noise (Augenblick et al., 2023) as well as a model focusing on the cardi-

nality of the state space (Ba et al., 2023). We find these results reassuring as they indicate that the

difficulty of belief updating tasks related to nonlinearities is fundamentally distinct from other

drivers of mistakes.

We next investigate how mistakes identified in scenarios with simultaneous signals translate

to more typical belief-updating tasks, where the decision-maker receives information sequen-

tially. To bridge this gap, we manipulate the information structure and information sequencing

of the task. Information structure pertains to the idea that the same content of information can

be presented in different ways. A scenario in which a decision-maker has an informative prior

can alternatively be re-formulated as one in which they start with an uninformative prior but

receive the equivalent amount of information through a signal. Although mathematically equiv-

alent, these expositions differ conceptually. Our experiment provides the first empirical evidence

of this equivalence. Regarding information sequencing, we alter the delivery of signals—either

simultaneous or sequential—and, in the sequential scenario, whether the more accurate or less

accurate signal is received first.

Our findings offer multiple insights. First, compared to what we term the Baseline treatment—

where participants begin with an informative prior, receive a signal, and afterward update their

beliefs—providing the same information through two simultaneous signals significantly reduces

errors. Notably, one of the parameterizations we examine uses parameters from the seminal paper

by Kahneman and Tversky (1973), which has been employed in many subsequent papers. This

parameterization is a leading example of base-rate neglect, one of the most well-documented and

persistent biases observed in various settings (Benjamin et al., 2016; Benjamin, 2019; Esponda

et al., 2023; Gneezy et al., 2013). According to our measure of difficulty, this parameterization is

not considered difficult due to the relatively low precision of signals and the small gap between

them. Our data reveals that presenting information through two simultaneous signals effectively

addresses base-rate neglect, as the resulting posteriors are not statistically different from Bayesian

predictions. This is an important result, as decades of research in both economics and psychology

have shown that this bias is minimally affected by increased incentives (Gneezy et al., 2013),

abundant feedback (Esponda et al., 2023), and the use of contextual representations (Gigerenzer

and Hoffrage, 1995).

3In particular, we show that when participants start with a 50/50 prior and receive one partially informative signal,
the vast majority arrive at the exact Bayesian posterior, regardless of how close this posterior is to the corner.
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In our analysis of sequential information treatments, we find no aggregate impact on partici-

pants’ reported beliefs when modifying the information structure. However, we document a sig-

nificant recency bias that occurs regardless of task difficulty. We show that altering the sequence

in which information is presented—either simultaneously or sequentially, and in the latter case,

by varying the order of high and low accuracy signals—can reduce participants’ errors. However,

the most effective approach for disseminating information varies based on task difficulty. When

task difficulty is low, simultaneous information release is most effective. When task difficulty

is high, we leverage the recency bias to counteract the bias induced by task difficulty, making

a sequential release of information more advantageous. Concluding our analysis, we use most

of our treatments to decompose base-rate neglect and discover that it primarily arises from the

sequencing of information and task difficulty.

Taken together, the main contribution of this paper is twofold. First, our experiments provide

evidence that nonlinearities are influential in belief updating tasks—a phenomenon we broadly

categorize as task difficulty. Having established this link, we decompose the factors driving base-

rate neglect into three key elements: task difficulty, information structure, and information se-

quencing.

The remainder of the paper is structured as follows. We survey the literature in Section 1.1. In

Section 2, we lay out the conceptual framework. We dedicate Section 3 to the experimental design

and procedures. In Section 4, we present the aggregate results of our experiment. Individual level

analisis are presented in Section A in the Appendix. We conclude in Section 5.

1.1 Literature Review

Our paper relates to and builds upon several strands of literature. We discuss these strands below

and highlight our contribution in comparison to the prior findings.

Complexity literature. There is a rapidly developing and intriguing literature on decision com-

plexity. The debate surrounding the definition of complexity and the empirical methods for iden-

tifying it are still in their early stages and largely dependent on context. In the domain of rules,

complexity is found to be influenced by the number of states and transitions required to imple-

ment such a rule (Oprea, 2020; Banovetz and Oprea, 2022; Camara, 2021). In the domain of

lotteries, complexity has been linked to the number of distinct outcomes in the lottery support

(Bernheim and Sprenger, 2020; Puri, 2022; Fudenberg and Puri, 2022), the cognitive difficulty

of aggregating outcomes and objective probabilities into a single value (Oprea, 2022), and ex-

cess similarity between lotteries in the choice set (Enke and Shubatt, 2023). In the inter-temporal

choice problems, complexity has been linked to the difficulty of evaluating streams of future pay-

ments (Enke et al., 2023).

Closer to our setting are three recent papers exploring suboptimal updating through the lens

of behavioral theories and experimental data. Enke and Graeber (2023) show a link between mis-

takes in updating and cognitive uncertainty measure, which captures how confident people are
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in their decisions. The data reveals that cognitive uncertainty is related to a compression effect of

reporting beliefs closer to a 50-50 point. In addition, the authors manipulate the computational

complexity of a task and find that cognitive uncertainty at least partly reflects the subjective per-

ception of how difficult the problem is. Augenblick et al. (2023) study mistakes in belief-updating

tasks with different signal precisions and find that people tend to over-infer from weak signals and

under-infer from strong signals. The authors utilize a theory of cognitive imprecision about signal

informativeness to accommodate both patterns. Ba et al. (2023) suggest that the difficulty of incor-

porating new information depends on the size of the state space and develops a behavioral model

that incorporates two known psychological frictions, noisy cognition and representativeness. This

model predicts under-reaction to new information when the state space is simple (consists of two

states only), while the opposite is true when the state space is more complex.

In Section 4.2, we discuss at length all three above approaches, relate them to our notion of

task difficulty, and explore the implications of these theories in the context of our experiment. To

preview these results, we show that cognitive uncertainty, cognitive imprecision, and the cardi-

nality of the state space cannot account for the mistakes we observe across our treatments. We,

therefore, view our work as complementary to the existing literature and proceed to formalize the

connection between task difficulty and the nonlinearities embedded in Bayesian updating.

Challenges with Nonlinearities. Our task difficulty notion relates to empirical research docu-

menting challenges and sub-optimal decisions apparent in environments with nonlinear features.

Below, we outline the types of environments explored in the literature where non-linearities have

been associated with decision-making errors. Notably, our study is the first to extend this concept

to belief-updating tasks and demonstrate its effectiveness in organizing errors in the formation

of posterior beliefs. The exponential growth bias refers to the tendency of underestimating com-

pound growth processes prevalent in financial decisions (Wagenaar and Sagaria, 1975; Stango and

Zinman, 2009; Levy and Tasoff, 2016, 2017). The schmeduling heuristic suggests simplified ways

of constructing mental representations of nonlinear incentive schemes (Rees-Jones and Taubin-

sky, 2020). The MPG illusion refers to people’s mistaken beliefs that the amount of gas consumed

by a car decreases linearly with car’s MPG (Larrick and Soll, 2008). The difficulty in discounting

atemporal payments that feature a large number of steps given the induced parameters has been

documented in intertemporal choice problems (Enke et al., 2023). There are also papers that use

the number of kinks in piece-wise linear schedules to study mistakes. For instance, Shaffer (2020)

shows that people misunderstand non-linear prices and incorrectly think that the marginal price

applies to all consumption levels, not simply the last unit. Goodman and Puri (2024) document

that market participants often choose to purchase binary options, even when strictly dominant

bull spreads are available at lower prices. They hypothesize that this behavior stems from the fact

that binary options are easier to understand, as they involve fewer kinks in their payoff schedules

compared to bull spreads.
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Sub-optimal belief updating. There is a vast body of research in psychology and economics

documenting errors in probabilistic reasoning that result in sub-optimal beliefs, i.e., beliefs that

do not align with Bayesian predictions. The most relevant to our study are papers that document

the effect information sequencing has on belief updating, e.g., primacy and recency effects (Pitz

and Reinhold, 1968; Edenborough, 1975; Grether, 1992). Benjamin (2019) provides the most re-

cent and comprehensive survey focusing on biases related to random samples and belief updating

in general.4

Base-rate neglect holds a prominent place in this literature as it is one of the more persistent

phenomena and, therefore, one of the most frequently studied. First introduced by Kahneman

and Tversky (1972) and Bar-Hillel (1980) and followed by many empirical papers scrutinizing

this bias and theoretical models contemplating its origins (Benjamin, 2019; Benjamin et al., 2019).

Of special interest is a recent paper by Esponda et al. (2023), which shows that even after ample

opportunities to learn, base-rate neglect persists. The authors explore the main forces that hinder

learning from feedback and find that mistakes that stem from misrepresentation of primitives of

the environment are likely to be persistent. In this paper, we use base-rate neglect as our case

study. However, we note that the insights we present are general and applicable to any setting

involving probabilistic reasoning in the presence of new information.

Several recent papers have proposed different mechanisms that can drive biased updating. In

some papers, people understand the mechanics of Bayes rule but distort true probabilities. For

example, in Rabin (2002) and Rabin and Vayanos (2010), these distortions reflect a misspecified

sampling process, while in Woodford (2020) and Enke and Graeber (2023), the distortions are

due to the noisy perception or rational inattention. In contrast, the model proposed by Bordalo

et al. (2023) suggests that salience drives shifts in attention, leading to instability in biases when

irrelevant changes to the problem are introduced. Our paper differs from this literature by fo-

cusing on characterizing the types of updating problems in which people make significant errors,

rather than identifying the underlying psychological mechanisms behind these errors. We antic-

ipate that future research will delve deeper into understanding the forces driving difficulties in

updating within nonlinear regions of Bayesian updating.

What mitigates biased beliefs? Given the prevalence of biased beliefs and their importance in

determining decisions, great efforts have been made to understand how responsive these biases

are to various features of the environment and how to mitigate them.5 Gneezy et al. (2023) study

the role of financial incentives and find that base-rate neglect is largely unresponsive to stakes.

Several papers document that the extent of base-rate neglect depends on whether the task is pre-

sented in terms of frequencies as opposed to probabilities (Koehler, 1996; Barbey and Sloman,

2007), whether the task is framed in an intuitive and contextual manner as opposed to an abstract

4The recency bias has been identified as one of the psychological underpinning of empirical regularity linking past
personal experiences of economic crises and future consumer beliefs and spendings (Malmendier and Shen, 2024).

5See also the ‘nudge’ literature, which explores how to steer people into making better choices (Thaler and Sunstein,
2008; Thaler and Benartzi, 2004; Madrian and Shea, 2001).
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way (Cheng and Holyoak, 1985; Gigerenzer and Hoffrage, 1995; Gneezy et al., 2023; Ganguly

et al., 2000), and whether the task is presented as forecasting the future outcomes as opposed

to updating beliefs about the state Fan et al. (2022). Esponda et al. (2023) find that information

about primitives of the environment might hinder learning. Contrasting a treatment in which no

primitives were provided with standard treatment, they find that in the former, elicited beliefs

are eventually closer to the Bayesian posterior.6

We share with this literature the goal of understanding drivers of base-rate neglect and ways to

mitigate it. While several manipulations from the papers discussed above reduce the bias to some

extent, none come close to eliminating it. We examine a different manipulation and demonstrate

that, for the typical parameters used in the literature, it eliminates base-rate neglect from the

onset of the treatment.

2 Conceptual Framework

2.1 Setup

Consider a standard belief-updating task. The state is binary ω ∈ {F,S}, denoting, for example,

whether a project is a Failure or a Success. A decision-maker does not know the state but holds

prior belief P (F) = p0. They observe the realization of a signal s, which can take either a negative

(s = n) or positive (s = p) value. The signal has accuracy θs, which summarizes the probability that

it correctly reveals the state, P (s = n|F) = P (s = p|S) = θs.

Upon observing a signal, Bayes’ rule dictates that the updated beliefs in the form of a posterior-

odds ratio can be written as

P (F|s)
P (S |s)

=
P (s|F)
P (s|S)

P (F)
P (S)

=
P (s|F)
P (s|S)

p0

1− p0
, (1)

where P (s|F)
P (s|S) is the base factor of the signal, and p0

1−p0
is the prior probability ratio. The posterior

odds ratio underscores that both the prior and the signal contain valuable information, which the

decision-maker uses to update their beliefs.

2.2 Information Structure

For our analysis, it is useful to distinguish between an informative and uninformative prior, where

the latter is one that has minimal impact on the posterior. For our binary case, an uninformative

prior is one that assigns equal probability to both states p0 = 1/2. With this prior, once an agent

6See also a stream of recent papers that discuss the relationship between incorrect mental models and task complex-
ity (Enke and Zimmermann, 2019; Enke, 2020; Graeber, 2023). Worth highlighting is also Esponda et al. (2023) who, in
one of their treatments, provide subjects with empirical frequencies of the joint distribution of signals and outcomes.
Their findings suggest this approach can significantly mitigate the issue of base-rate neglect. However, it is important
to note that the effectiveness of this solution is contingent upon gathering data over multiple rounds.
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receives a signal, their posterior is fully determined by the value and accuracy of this signal.7

In this spirit, we intend to convey that the prior is uninformative: it does not interfere with the

information from the signal, it is optimal to fully follow the signal. Henceforth, we call a prior

uninformative if it assigns a probability of 1/2 to each state and call it informative otherwise.

Consider an agent with an informative prior P (F) = p0 > 1/2. If this agent receives no other

information, their posterior-odds ratio will be P (F)
P (S) = p0

1−p0
. We can reinterpret this prior as a pos-

terior originating from an initial uninformative prior P (F) = p̃0 = 1/2, and a signal with accuracy

θs = p0 whose realized value is negative.8 In this case, the posterior-odds ratio will be

P (F|s = n)
P (P |s = n)

=
P (s = n|F)
P (s = n|S)

P (F)
P (P )

=
θs

1−θs

1/2
1/2

=
p0

1− p0
.

Thus, having a prior p0 > 1/2 is equivalent to having an uninformative prior p̃ = 1/2 and receiving a

signal with accuracy p0, that turned out to be negative. The mathematical requirements to calcu-

late posteriors remain unchanged. We refer to this equivalence as information structure, pertaining

to the idea that the same content of information can be presented in different ways.

This equivalence holds more generally, for instance, in cases in which an agent has an in-

formative prior and receives additional information from the outset. Consider an agent with an

informative prior P (F) = p0 > 1/2 who receives a signal with accuracy θs. Once more, we can ex-

press the updated beliefs in the form of a posterior-odds ratio as in equation (1). Now, consider

an alternative case where an agent receives two signals with accuracy θ1 and θ2 = θs, and has an

initial prior p̃0. Conditional on s1 = n, the posterior-odds ratio will be

P (F|s2, s1 = n)
P (S |s2, s1 = n)

=
P (s2|F)
P (s2|S)

P (s1 = n|F)
P (s1 = n|S)

P (F)
P (S)

=
P (s|F)
P (s|S)

θ1

1−θ1

p̃0

1− p̃0
.

In the special case in which the accuracy of the first signal is θ1 = p0, and the prior is uninforma-

tive, p̃0 = 1/2, the above reduces to

P (F|s2, s1 = n)
P (S |s2, s1 = n)

=
P (s|F)
P (s|S)

p0

1− p0

1/2
1/2

. (2)

Note that equation (2) is equal to the posterior-odds ratio under the initial problem, equation (1).9

Thus, the two information structures, one with an informative prior and a signal and another

with an uninformative prior and two signals, are mathematically equivalent. Importantly, this

equivalence holds regardless of whether the signals arrive simultaneously or sequentially. This is

critical for our setup because, as we move from one treatment to another, we alter the structure

7Specifically, if the accuracy of the signal is θs and the signal realization is negative (positive), the agent’s posterior
beliefs, as calculated by Bayes’ rule, are that the project is a Failure (Success) with probability θs and a Success (Failure)
with complimentary probability 1−θs. Thus, the new information fully determines their distribution of beliefs.

8Having p0 > 1/2 is without loss of generality. If p0 < 1/2, let the realized signal be s = p and signal accuracy be
θs = 1− p0.

9 P (s|F)
P (s|S) will be equal to θs

1−θs
or 1−θs

θs
depending on the realized value of the signal.
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and sequencing of information, yet the core mathematical problem remains unchanged.

2.3 Task Difficulty

Motivating Example. To illustrate the general idea behind our notion of task difficulty, consider

the following example. There are two information structures, both with an uninformative prior

and two signals, the accuracy of which differs by five percentage points. In the first case, signal

accuracies are θ1 = 0.85 and θ2 = 0.80, while in the second, they are θ1 = 0.97 and θ2 = 0.92.

Consider an individual who observes two signals, s1 = n and s2 = p, and updates posterior beliefs.

If both signals had identical accuracy, say both equal to 0.80, or both equal to 0.92, then it seems

natural to place equal weight on both signals and form a posterior equal to the original prior of

50%. However, because the first signal is more accurate than the second, individuals may argue

they should weigh the first signal slightly more and, thus, compute a posterior that leans more

toward Failure than Success.

Although this is true in both cases, the extent to which the first signal is more informative

than the second is quite different between them. The Bayesian posterior is 41.3% in the first

case, seemingly a plausible value near which individuals’ average posteriors may lie. In contrast,

the Bayesian posterior is 26.2% in the second case, despite the difference in signal accuracies

remaining only five percentage points. This pattern becomes even more pronounced with higher

accuracy signals or as the disparity between signal accuracies increases.

Task Difficulty and Nonlinearities. The difficulty illustrated above stems from the non-triviality

of incorporating information from signals with different accuracies. The challenge is to know

how much more one needs to react to the higher accuracy signal compared to the lower accuracy

one. The answer to this question depends on the accuracy of both signals. We argue individuals

may struggle to fully internalize the extent to which Bayesian updating requires non-linear think-

ing. Figure 1 depicts the derivative of the posterior with respect to the high-accuracy signal.10

The marginal increase is unchanged only when facing a single signal (θ2 = 1/2 reduces the low-

accuracy signal to an uninformative one). In all other cases, the marginal change in the posterior

depends not only on the signal’s own accuracy but on the accuracy of the other signal as well, i.e.,

the Bayesian posterior is no longer linear. It is these nonlinearities in Bayesian updating that we

believe contribute to the varying levels of difficulty.

10Predictions are unchanged if alternatively, we focused on the low accuracy signal.
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Figure 1: Bayesian Posterior Derivative w.r.t high accuracy signal, θ1

Notes: The left graph depicts a heatmap (warmer colors represent higher values), and the right graph is 3D plot. In

both graphs, we focus on θ1 ≥ θ2, since θ1 denotes the high accuracy signal.

We argue that if individuals fail to fully account for these nonlinearities, they will perform

better with belief updating in regions where the nonlinearities are less pronounced. Conversely,

when these nonlinearities are high—a small change in signal precision leads to a large change

in posteriors—we argue that individuals’ mistakes will be larger. Referring back to the example

above, the case with θ1 = 0.85 and θ2 = 0.80 falls in a region where nonlinearities are less pro-

nounced compared to when θ1 = 0.97 and θ2 = 0.92. Therefore, we predict that individuals would

make larger mistakes in the latter case.

We should clarify that by task difficulty, we are not necessarily referring to how participants

perceive the task. From their perspective, little changes as we vary parameter values. Rather,

due to the nonlinearities involved, the difficulty lies in the Bayesian updating process itself. If

participants use an updating rule that does not fully account for these nonlinearities, there will be

regions with small discrepancies and other regions where discrepancies are more pronounced. We

define regions with larger discrepancies, and thus more mistake-prone, as more difficult—affected

more by the inherent complexity of the updating problem.

Concrete Formulations. While there are several ways to capture this idea formally, in the Ap-

pendix we offer a parsimonious approach as well as two alternative models that yield qualitatively

similar predictions to those described here. First, in Section ??, we offer an approach based only

on Bayesian posteriors, in which the difficulty of the problem increases in the nonlinearity of the

posterior. Next, in Section B.2, we explore a modification of the Grether (1980) model, which has

been extensively used in empirical work studying belief updating, and make minor restrictions

incorporating the aforementioned concepts. This modified model is more inert than the Bayesian

model, leading to large differences, especially in regions where large changes in posteriors are

expected for small changes in signal accuracies. Finally, in Section B.3, we explicitly model an

agent’s inability to fully follow changes in the second derivative and, thus, only partially react to
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nonlinearities.

The frameworks mentioned above represent some of possibly many approaches that empha-

size how nonlinearities in Bayesian updating can impact an individual’s ability to carry out proper

belief updating. We suspect—and hope—that future work will identify and test even more speci-

fications that speak to this phenomenon.

Testable Implications. The above discussion, regardless of the specific formalization we con-

sider, leads to the following testable implications.

1. Task difficulty increases as the level of signal accuracies increases, holding fixed the gap

between signal accuracies.

2. Task difficulty increases as the gap between signal accuracies increases, holding fixed the

level of signal accuracies.

It is these testable implications that we take to the data. As we describe in detail in the next

section, we utilize six parameterizations, across which we systematically vary both the absolute

level of signal accuracies and the gaps between them. The empirical footprint of these testable

implications is the wedge between posteriors reported by participants and Bayesian predictions.

If our notion of task difficulty holds water, we expect to see greater mistakes in more difficult

belief-updating problems—higher levels of and gaps between signal accuracies.

3 Experiment Design

We designed our experiment to manipulate three key aspects: task difficulty, information struc-

ture, and information sequencing.

To capture the impact of task difficulty, we vary parameter values. To capture the impact of

information structure, we vary whether participants receive information through an informative

prior and one signal or through an uninformative prior and two signals. Finally, to capture the

impact of the sequencing of information delivery, we vary whether the two signals arrive simul-

taneously or sequentially. To decompose any possible interaction between the timing of a signal’s

arrival and its accuracy, we have two sequential information arrival treatments in which we vary

the order of signal accuracies: high accuracy followed by low accuracy and vice versa. Below, we

first describe the main task participants encountered in each treatment and then provide details

about the structure and parameters of each treatment.

Main Task. In each treatment, participants face a standard belief-updating task with a binary

state and binary signal(s). At the outset of each round, the state is represented by a project se-

lected from a pool of projects; each project has a p chance of being a Failure and a 1− p chance of

being Successful. Participants know p but do not know whether the project is successful or not.

Depending on the treatment, participants receive either one or two conditionally independent

10



signals with known accuracies.11 In treatments with two signals, participants receive signals with

different accuracies. Let θ1 (θ2) denote the accuracy of the higher (lower) accuracy signal. We

use the strategy method and elicit participants’ posterior beliefs for each possible signal realiza-

tion.12 Relying on the strategy method ensures we collect a balanced dataset. Each participant

participates in only one treatment and plays a total of 20 rounds.13

Feedback. At the end of each round, participants are informed about the realized value of the

signal(s) (positive or negative) and state (Success or Failure). Realized signal and state values from

all previous rounds are stored at the bottom of the screen in an easy-to-read table. We include

detailed feedback to mitigate potential memory issues that may disrupt learning and confound

results; see screenshots in the Online Appendix.

Treatments. In the Baseline treatment, participants have an informative prior p and receive

one signal with accuracy θ2.14 This treatment mimics the classic experiment of Kahneman and

Tversky (1972) and the follow-up literature on base-rate neglect (Benjamin, 2019; Esponda et al.,

2023).

In the Simultaneous treatment, participants have an uninformative prior and receive two

signals simultaneously. The signals are conditionally independent and have accuracies θ1 and

θ2. With two binary signals, there are four possible combinations of signal realizations. However,

since the prior is uninformative, the case in which both signals are positive is the mirror equivalent

of that in which both signals are negative. Similarly, the first signal being negative and the second

being positive is the mirror of the case in which the first signal is positive and the second is

negative. In other words, asking four questions would have been redundant. To keep treatments

comparable, we randomly draw a value for the first signal and rely on the strategy method to

allow for both a positive and a negative realization of the second signal. For more details, see the

Online Appendix.15

In the Sequential High-Low treatment, participants have an uninformative prior and receive

two signals. Unlike the Simultaneous treatment, these signals arrive sequentially. Participants

receive the higher accuracy signal first. After observing the first signal realization, participants

submit their updated beliefs about the state. Afterward, relying on the strategy method, partic-

ipants submit their beliefs for two possible realizations of the second signal.16 Thus, beliefs are

11Signal accuracy is the probability that the signal correctly reveals the state: P (s = p|S) = P (s = n|F) = θs.
12The strategy method is a common practice in many experiments, including beliefs-updating experiments (Gneezy

et al., 2013; Esponda et al., 2023). For the comparison between the strategy method and the direct response method,
see Brandts and Charness (2011).

13Repetition of a task is a standard technique in experiments, which allows participants to adjust to the interface and
further arrive at their optimal response. We address learning in the data analysis section.

14We vary whether p represents the probability of Success or Failure. This assignment is determined randomly, with
equal probability, for each participant at the beginning of the experiment and remains unchanged throughout.

15In addition to guaranteeing a balanced dataset, this design ensures that participants encounter all possible combi-
nations of positive and negative signal realizations throughout the rounds.

16This makes the design comparable with the Simultaneous treatment in which the first signal value is drawn,
whereas beliefs are elicited for both possible values of the second signal.
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elicited twice, once after the first signal realization and once via the strategy method for both

possible values of the second signal.

Finally, the Sequential Low-High treatment is identical to the Sequential High-Low treatment

except that participants receive the lower accuracy signal first.

In summary, for each treatment in each round, we elicit two beliefs: one when the signal aligns

with the prior (or the first and second signals align) and another when the signal is misaligned

with the prior (or the first and second signals are misaligned).17

Parameters. Table 1 summarizes our treatments and parameters. We use two main sets of pa-

rameters, denoted below by A and B. Under parametrization A, in treatments in which partici-

pants receive two signals, signal accuracies are set to (θ2,θ1) = (0.80,0.85), whereas in the Baseline

treatment (denoted by Ã), the prior accuracy is set to p = 0.85 and signal accuracy to θ2 = 0.80.

This is the classic set of parameters used in the base-rate neglect literature (Kahneman and Tver-

sky, 1972; Benjamin, 2019; Esponda et al., 2023). Under parametrization B, in treatments in which

participants receive two signals, signal accuracies are set to (θ2,θ1) = (0.85,0.95), whereas in the

Baseline treatment (denoted by B̃), the prior accuracy is set to p = 0.95 and signal accuracy to

θ2 = 0.85. As described in Section 2.2, within each parameterization, the Bayesian predictions are

identical for all treatments. The primary purpose of parametrization B is to assess the validity of

the task difficulty notion described in Section 2.3, and to act as a test of robustness for the findings

from the initial parametrization A.

Table 1: Sessions, Treatments, and Parameter Values

Session # Participants Treatment Parameter Prior
Low Accuracy

Signal
High Accuracy

Signal

1 101 Baseline Ã p=0.85

θ2 = 0.80

—
2 101 Simultaneous

A p=0.50 θ1 = 0.853 101 Sequential High-Low
4 100 Sequential Low-High

5 99 Baseline B̃ p=0.95

θ2 = 0.85

—
6 99 Simultaneous

B p=0.50 θ1 = 0.957 102 Sequential High-Low
8 100 Sequential Low-High

9 99

Simultaneous

C

p=0.50

θ2 = 0.75 θ1 = 0.85
10 100 D θ2 = 0.80 θ1 = 0.90
11 100 E θ2 = 0.85 θ1 = 0.90
12 100 F θ2 = 0.90 θ1 = 0.95

Four additional parameterizations, C, D, E, and F, allow us to decompose how the level and

gap between signal accuracies are linked to task difficulty. Based on our conceptual framework

17We say the signal is aligned with the prior if the prior leans towards Failure (Success) and the realized signal value
is negative (positive). In treatments with two signals, signals are aligned (misaligned) if both have the same realized
value (one is positive and the other is negative).
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presented in Section 2.3, we can rank all six sets of parameters in terms of difficulty, with param-

eterization A being the easiest and parameterization B being the most difficult. The remaining

sets can be ranked based on the two organizing principles, where Cj denotes the difficulty of

parameterization j:

1. Task difficulty, as described in Section 2.3, increases as the level of signal accuracies in-

creases, holding constant the gap between them:

• CA(0.80,0.85) < CE(0.85,0.90) < CF(0.90,0.95)

• CC(0.75,0.85) < CD(0.80,0.90) < CB(0.85,0.95)

2. Task difficulty increases as the gap between signal accuracies increases, holding constant the

level:

• CA(0.80,0.85) < CD(0.80,0.90)

• CE(0.85,0.90) < CB(0.85,0.95)

Interface Figure 18 in Section C in the Appendix shows the interface for the baseline treatment.

Detailed descriptions of the interface and instructions for each treatment can be found in the

Online Appendix.

Subject Pool. We conducted our experiment on the Prolific platform with roughly 100 partic-

ipants in each of the 12 treatments, for a total of 1202 participants. We recruited participants

between the ages of 18 and 70, who were living in the United States, were fluent in English, and

had a high approval rating on Prolific. For each treatment, an equal number of men and women

were recruited. The main experiment was carried out in October - December 2022, while two

additional treatments (D and E) were conducted in July 2023.

Participants’ Payments. In all treatments, participants received a $5 payment upon completion.

In addition, each participant had a 20% chance to be selected into a bonus group. For the selected

participants, one of the experimental rounds was randomly chosen for payment. The answers

submitted in the chosen round determined whether the selected participant received an addi-

tional bonus of $20. We used the standard BDM method to incentivize subjects to truthfully state

their beliefs.18 The experiment lasted 20 minutes on average, and participants earned, on average

$7.97.
18The BDM is theoretically an incentive-compatible method for eliciting truthful responses regardless of partici-

pants’ risk attitudes Becker et al. (1964). In addition, to help participants understand this method, we told them that
they had no incentive to report beliefs falsely if they wanted to maximize the expected payoff in the experiment. Danz
et al. (2021) shows that announcing that truth-telling is optimal is an effective way to elicit true beliefs.
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Implementation. The experiment was approved by Caltech (IR22-1237) and Duke University

IRB (2023-0033) and preregistered on aspredicted.org.19 The experimental software was pro-

grammed in oTree Chen et al. (2016). Instructions and screenshots of the interface are presented

in the Online Appendix.

4 Results

We begin our analysis with the Simultaneous treatment—an environment free of the effects of

structure and sequencing. It is in this environment that we study our notion of task difficulty.

The main analysis of task difficulty is presented in Section 4.1, where we utilize all six parame-

terizations of the Simultaneous treatment. In Section 4.2, we go through a variety of robustness

checks supplemented by data from Enke and Graeber (2023) for an additional assessment.

Having established our findings with regard to our notion of task difficulty, we turn to the

Baseline and Sequential treatments. In Section 4.3 and Section 4.4, we focus on parameteriza-

tion A (Ã) and B (B̃) where we analyze the effect of the structure and sequencing of information

delivery. In Section 4.5, we use the discrepancy arising from signal sequencing to counter the

discrepancy arising from task difficulty. Finally, in Section 4.6, we quantify the extent to which

information structure, sequencing, and task difficulty affect belief updating across the least and

most difficult parameterizations A (Ã) and B (B̃), respectively. The individual-level analysis is

presented in Section A in the Appendix. For the remainder of the paper, with a slight abuse of no-

tation, we will refer to parameters A(Ã) and B(B̃) as simply parametrization A and B, respectively.

Approach to data analysis. We focus our analysis on cases in which participants receive mis-

aligned information.20 We do so because when participants receive aligned information, the

Bayesian posterior probabilities are very close to zero.21 With predicted values so close to the

0 border, implementation errors participants may have are unlikely to be mean zero. We regard

utilizing this data for our main analysis as less than ideal. Thus, as stated in our preregistration,

our focus is on elicitations from misaligned signals.22 Nonetheless, we utilize all elicitations when

conducting individual-level analysis in Section A and illustrate them in the Appendix.

To simplify the presentation and eliminate redundancies, in our data analysis, we normalize

the prior and the high-accuracy signal to be negative. Since we focus on the elicited beliefs from

19The experiment was conducted in three waves: the initial wave with parametrization A and B in October 2022;
decomposing task difficulty treatments, parametrization C and F, in December 2022; additional task difficulty treat-
ments, parametrization D and E, in June 2023. Each wave was separately preregistered on aspredicted.org; see prereg-
istration 1, 2, and 3.

20Recall, in the Baseline treatment, information is aligned (misaligned) if the signal’s realization agrees (disagrees)
with the direction in which the prior leans. In all other treatments, information is aligned (misaligned) if the realized
values of the signals are the same (different).

21These probabilities are 0.042 for parametrization A, 0.009 for B, 0.055 for C, 0.027 for D, 0.019 for E, and 0.006 for
parametrization F.

22An alternative approach would be to treat these elicitations as truncated. However, doing so requires making
assumptions about the nature of the truncation and the distribution of implementation errors. These assumptions
would naturally not be without loss of generality.
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misaligned signals, this normalization implies a positive value for the low-accuracy signal.

4.1 Task Difficulty

In this section, we present experimental results from the Simultaneous treatments. We present

the disparity between the observed and Bayeisan posteriors, which we call mistakes for brevity.

Figure 2 displays how mistakes respond to an increase in the level of signal accuracies, keeping

the difference between the two signals’ accuracies fixed. In the left panel, the difference between

signal accuracies is 5, whereas in the right panel, the difference is 10. Our data confirms that

regardless of the difference between signal accuracies, an increase in the level leads to larger

mistakes, i.e., the gap between reported posteriors and Bayesian predictions.

Figure 2: The Impact of Signal Accuracy Levels on Task Difficulty
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Notes: We report the difference between the observed and Bayesian posteriors, averaged across participants in all 20

rounds, alongside the 95% confidence intervals, clustered at the individual level. The horizontal axis depicts the

accuracy of the low-accuracy signal and lists the label of each parameterization below.

Figure 3 shows how mistakes respond to an increase in the difference between signal accura-

cies, keeping the level fixed. In the left panel, the signal accuracy level is fixed at 80, whereas in

the right panel, the level is 85. Our data confirms that regardless of the level of signal accuracies,

an increase in the difference results in an increase in mistakes, i.e., the gap between observed and

Bayesian posteriors.

We collect these findings in Table 2, where we present a regression of the gap between the

reported and the Bayesian posterior on a constant, the level, and the difference between signal

accuracies. The first column of Table 2 utilizes the whole dataset from the six treatments, whereas

the second column relies on data from the last five rounds. The regression confirms the observa-

tion from the graphs, where we see that both the difference and the level of signal accuracies have

a sizable and statistically significant effect.

Result 1 (Mistakes: Level and Difference). The level of and difference between signal accuracies in-
crease the gap between observed and Bayesian posteriors.
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Figure 3: The Impact of Signal Accuracy Difference on Task Difficulty
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Notes: We report the difference between the observed and Bayesian posteriors, averaged across participants in all 20

rounds, alongside the 95% confidence intervals, clustered at the individual level. The horizontal axis depicts the

difference in signal accuracies and lists the label of each parameterization below.

Table 2: Accuracy level and Difference impact on observed Gap

Gap
All Rounds Last 5 Rounds

Difference 1.566∗∗∗ 1.555∗∗∗

(0.240) (0.289)
Level 0.464∗∗∗ 0.421∗∗∗

(0.124) (0.152)
N (observations) 11980 2995
K (individuals) 599 599
Individual-level clustered errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Linear Thinking Estimation. In this section, we estimate one of the models discussed above,

according to which an agent can only partially incorporate nonlinearities. As we show in detail

in Section B.3 in the Appendix, the posterior of such an agent can be decomposed into two parts:

the Bayesian posterior and a fully linear posterior:

π̃(S |s2 = p,s1 = n) = α
θ2(1−θ1)

θ2 +θ1 − 2θ2θ1︸              ︷︷              ︸
Bayesian Posterior

+(1−α)
(1

2
−θ1 +θ2

)
︸          ︷︷          ︸

Fully Linear

.

The α parameter quantifies the agent’s ability to incorporate nonlinearities, where a value of α = 0

indicates a complete failure to incorporate nonlinearities in belief updating, while α = 1 signi-

fies behavior indistinguishable from Bayesian updating. We estimate α via linear regression and

present the results in Table 3. In the first column, we analyze data pooled from all 20 rounds,

while the second column focuses on data from the last five rounds. The graph of the estimated

model is presented in Figure 4.

16



Table 3: Estimated α

All Rounds Last 5 Rounds
α̂ 0.417∗∗∗ 0.564∗∗∗

(0.0555) (0.0663)
N (observations) 11980 2995
K (individuals) 599 599
Individual-level clustered errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure 4: Estimated Model

Notes: The figure illustrates the Bayesian (α = 1) and fully linear
(α = 0) models through transparent graphs, along with the esti-
mated model (α = 0.56) via the yellow graph.

The estimated value of α is approximately 0.42 (0.56) when considering the entire dataset

(the last five rounds).23 Therefore, the model that best fits the data suggests that participants

lie between Bayesian and linear updaters, indicating that participants face challenges in properly

incorporating nonlinearities while still exhibiting some degree of nonlinear thinking.

Result 2 (Updating: Bayesian vs Linear). Participants are capable of incorporating nonlinearities only
partially. Behavior is best described by a model that roughly lies between Bayesian and linear updating.

4.2 Task Difficulty Robustness Checks

Task Difficulty and Cognitive Uncertainty We believe it is useful to compare the implications

of our task difficulty measure with those predicted by the cognitive uncertainty notion studied in a

recent paper by Enke and Graeber (2023). Cognitive uncertainty has been linked to a compression

effect, according to which individuals tend to report beliefs closer to the middle value of 50 when

they are more uncertain of their answers. Enke and Graeber (2023) provides empirical support

for this idea by gathering a new dataset consisting of belief elicitations as well as measures of

cognitive uncertainty at the individual level.

We utilize data from Enke and Graeber (2023).24 Aiming for comparability with our dataset,

we examine cases where participants have an informative prior and receive a single signal.25 Re-

23By conducting a similar exercise and employing a nonlinear regression on the alternative modified Grether model,
analyzed in Section B.3, we obtain an estimated value of approximately 0.46 (0.58) when utilizing the entire dataset
(the last five rounds).

24We are grateful to the authors for providing us with their data.
25The parameters utilized have prior values of (50,70,90,95,99) and signal accuracies of (65,70,75,90). Our findings

in Section 4.4 indicate that beliefs observed in the case with an informative prior and one signal should closely resemble
those obtained from a treatment involving sequential information arrival with two signals and an uninformative prior.
The sequential arrival of information is less than ideal for the study of task difficulty, as sequencing also impacts
elicited beliefs. However, in Section E.2 in the Appendix, utilizing symmetric parameter cases, we perform a back-of-
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gression analysis, presented in Table 4, demonstrates that the level of and difference between the

accuracies of information sources, which represent our measure of task difficulty, significantly

impact the gap between reported and Bayesian posteriors even after controlling for cognitive un-

certainty.

Table 4: Robustness Check

Gap

Low CU Mid CU High CU
Difference 0.168∗∗∗ 0.173∗∗∗ 0.178∗∗∗ 0.118∗∗∗ 0.247∗∗∗ 0.224∗∗∗

(0.0154) (0.0153) (0.0156) (0.0220) (0.0252) (0.0402)
Level 0.234∗∗∗ 0.232∗∗∗ 0.226∗∗∗ 0.201∗∗∗ 0.246∗∗∗ 0.329∗∗∗

(0.0495) (0.0494) (0.0491) (0.0746) (0.0755) (0.112)
Cognitive Unc 0.0569∗∗∗ 0.0529∗∗∗ 0.0693 0.144∗∗ 0.0227

(0.0173) (0.0176) (0.0587) (0.0620) (0.120)
Other Controls No No Yes No No No
N 2866 2866 2866 1496 1003 367
Individual-level clustered errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Each column represents a separate regression of the gap between reported and Bayesian posteriors. Other

Controls include participants’ age, education, Raven scores, and gender. We renormalize Difference = Difference
max(Difference) ·100

and Level = Level
max(Level) ·100 to ensure they are in the same order of magnitude as Cognitive Uncertainty, which can take

values between 0 and 100. The Low, Mid, and High CU columns group observations with CU ≤ 33, 33 < CU ≤ 66 and
66 < CU respectively.

In the last three columns, we segment the data by low, medium, and high cognitive uncertainty

scores and present separate regressions for each. In these cases, cognitive uncertainty loses power

due to restriction to specific subsets. Our takeaway from these additional regressions is that,

regardless of the controls and the subsets defined by participants’ cognitive uncertainty, our main

parameters of interest remain both statistically significant and substantial in magnitude.

Our interpretation of these results is that our notion of task difficulty and cognitive uncer-

tainty are distinct phenomena that can coexist and jointly influence the posteriors in belief-updating

tasks. In other words, our measure is not necessarily linked to perceived uncertainty: a participant

may be very confident and very wrong at the same time.26

Task Difficulty and Proximity to Corner Beliefs Recall that in the sequential treatments, par-

ticipants’ beliefs are elicited twice, once after receiving the first signal and once more via the

strategy method conditional on the second signal. Further, recall from our discussion of task dif-

ficulty in Section 2.3 that when faced with an uninformative prior and a single signal, the Bayesian

posterior is linear. Such tasks are, according to our measure, not difficult. We next look into this

prediction.

the-envelope calculation and find that, given these parameter values, sequencing can account for only a small part of
the increase in the observed gap, with the majority being attributed to the increase in task difficulty.

26Interestingly, running a regression of cognitive uncertainty on the difference and level of signal precisions leads
to an insignificant estimated value on the level and a negative and statistically significant estimated value on the
difference. That is, participants reported uncertainty does not appear to rise with increased signal precision. On the
contrary, reported uncertainty tends to decrease as the difference between signal precisions increases.
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Utilizing sequential treatments, our data shows that barring implementation noise, partici-

pants’ reported beliefs after receiving the first signal are largely in line with Bayesian posteriors,

see Figure 5. The upper (lower) graphs represent parametrization A (B), with dashed lines in-

dicating the Bayesian posterior centered at 15, 20, 5, and 15, respectively. The vast majority of

participants’ choices correspond to these levels. Because noise to the left is bounded by 0, whereas

the boundary for noise to the right is much further, the estimated averages tend to be a few per-

centage points higher than the accuracy of the signal, whereas the median values of the posteriors

match the Bayesian posteriors in all four cases. Therefore, when confronted with an uninfor-

mative prior and a single informative signal, participants accurately estimate posterior beliefs.27

This aligns with our notion of task difficulty and the linear nature of this particular case.

Figure 5: Sequential Treatments - Posteriors after the First Signal
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Notes: Above, we report the histogram of participants’ posteriors. The vertical axis represents the fraction of choices,

whereas the horizontal axis corresponds to the particular posterior.

Importantly, Figure 5 reveals that participants are capable of making correct choices far from

the middle (50%) point, e.g, in the most extreme case, when the correct choice is 5 in the Sequen-

tial B HL treatment, almost 80% of participants make this choice. Thus, our documented increase

27Two deviations worth mentioning are a small share of individuals choosing a posterior of 50 and a small share of
individuals making the inverse of the correct choice: 85 instead of 15, 80 instead of 20, 95 instead of 5, and 85 instead
of 15, respectively. A deeper dive into the data reveals that these are occasional mistakes a few participants make rather
than systematic deviations.
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in mistakes as signal precision increases can not be attributed to participants’ inability to make

correct choices near the extremes, as the graph shows they are more than capable of doing so.

Task Difficulty and Cognitive Noise Augenblick et al. (2023) demonstrate that individuals may

under- or over-infer from signals in a manner consistent with a cognitive noise model, where

noise interacts with signal precision. We see these findings as aligned with the message of our

paper, though there are significant differences. In our framework, not only does the precision of

the particular signal matter, but the number of relevant information sources and the precision of

other signals are of primary importance. For example, if we estimate the model from Augenblick

et al. (2023)

log
(

π1

1−π1

)
= log

(
π0

1−π0

)
+ k log

(
p

1− p

)β
in the baseline treatment, under parameters A and B, our estimates are k̂ = 1.35 and β̂ = 1.78.

Recall that for a Bayesian, both values are 1. As we will soon see in Section 4.3, in such cases,

participants excessively overfollow the signal. Consistent with these observations, the estimation

indicates that participants excessively overfollow the signal, both on average and even more when

the signal has higher precision. We next estimate the same parameters under the sequential treat-

ment. To ensure an environment with a prior and one signal, we focus on the updated beliefs

after receiving the first signal. Estimating the model again yields k̂ = 0.79 and β̂ = 1.09, which

are much closer to the Bayesian values. The additional weight from β̂ > 1 is mainly offset by the

lower weight from k̂ < 1, making participants’ choices remarkably close to the optimal posteriors,

as discussed in Task Difficulty and Proximity to the Corner Beliefs above.

These large differences in our estimated parameters indicate that if we were to use the es-

timated model from one setting to predict behavior in another, we would do a rather poor job.

Importantly, this implies that the behavior displayed by participants depends on the entire learn-

ing environment and not only on the precision of the signal in isolation. In this paper, we argue

that the number of relevant information sources and the precision of all these sources determine

whether individuals effectively incorporate information.

Task Difficulty and the Cardinality of the State Space Of relevance is also the work of Ba et al.

(2023), who demonstrate that how individuals incorporate signals depends on the complexity

of the state space. They find strong evidence that the number of realizations a signal can have

greatly influences its incorporation. Our work differs by showing that even when the number of

information sources and the cardinality of possible outcomes are fixed, individuals’ performance

in belief updating tasks varies greatly. Specifically, we demonstrate that participants perform

poorly in highly nonlinear regions but are indistinguishable from Bayesians in highly linear re-

gions. Thus, while the cardinality of the state space is of crucial importance, as demonstrated by

Ba et al. (2023), we emphasize that significant behavioral variation is possible even with a fixed

cardinality.
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Further Robustness Checks In Section D, we extend our analysis by comparing our results with

three additional concepts: Accuracy Ratios, Preferences for Simplicity, and the Bayesian Posterior
level. We demonstrate that these concepts either capture the effects we observe very partially or

are entirely inconsistent with our data.

To summarize, we view the highlighted papers as complementary to our work, as we all aim

to understand what features affect belief updating. While we share commonalities with previous

research, we demonstrate that what we capture is different from cognitive uncertainty and cogni-

tive noise, is not driven by the proximity of corner beliefs, and affects belief updating even if the

cardinality of the state space is kept fixed. We emphasize that task difficulty depends not only on

signal precision but also on the number of relevant information sources and the precision of all

sources.

4.3 Baseline vs Simultaneous Treatments

In Figure 6, we present the round-by-round average posteriors under misaligned information. The

two dashed lines represent the Bayesian posterior (41.38 in A and 22.97 in B) and the posterior

for an agent exhibiting perfect base-rate neglect (80 in A and 85 in B). The latter refers to an agent

that completely disregards the information from the prior and relies solely on the signal to form

a posterior.

Figure 6: Posteriors in Baseline and Simultaneous A and B Treatments
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Notes: We report the round-by-round average posteriors under misaligned information, alongside the 95% confidence

intervals, clustered at the individual level. The lower horizontal dashed line depicts the Bayesian posterior, while the

top dashed line depicts the perfect base-rate neglect posterior.

We start with parameterization A, which represents the low-difficulty setting according to our

notion presented in Section 2.3. This parameterization is also the leading parameterization used

in both Economics and Psychology literature to study how people update their beliefs (Benjamin,

2019), and, specifically, documenting the base-rate neglect phenomena. In the Simultaneous treat-

ment, both signals are received at the same time, eliminating any effects of information sequenc-

ing. Moreover, the effect of information structure is minimized as all available information is

21



conveyed through signals alone, without the presence of an informative prior. Therefore, the Si-

multaneous treatment under parametrization A is the natural initial comparison to the Baseline

treatment as it minimizes the effect of information structure, information sequencing, and task

difficulty.

Throughout all rounds, we see minimal learning in the Baseline treatment, maintaining an

average posterior of 63.69. These features are consistent with the existing literature.28 This char-

acteristic of minimal learning holds for all treatments in our experiment. In the Simultaneous

treatment, however, the average belief is 41.65 and not statistically distinguishable from the op-

timal Bayesian level (see Table 5); the p-value of the difference is 0.786. We find this observation

striking, considering that, as emphasized in Section 2.2, the mathematical problem underlying

both treatments is identical. Moreover, it is worth noting that this complete correction occurs

right from the outset.

We consider this to be an important finding, especially given the comprehensive body of work

in both Psychology and Economics that establishes base-rate neglect as one of the most persistent

deviations from Bayesian updating, showing minimal responsiveness to higher incentives Gneezy

et al. (2023), ample feedback Esponda et al. (2023), or the use of more relatable contexts over

mathematical constructs Gigerenzer and Hoffrage (1995). Certain approaches that have managed

to mitigate deviations from optimal updating involve the utilization of aggregate statistics com-

puted over several rounds. However, in real-life situations, individuals may not encounter the

same problem repeatedly, and aggregating private information can be challenging. Thus, we con-

sider it noteworthy that appropriate structuring and timing of information alone can effectively

aid in, or in this case, completely rectify belief updating.

Result 3 (Belief Updating Immediate Correction). In low-difficulty environments, delivering infor-
mation through two simultaneous signals leads to an estimated mean statistically indistinguishable from
the Bayesian posterior.

Turning to the right panel of Figure 6 which presents the high-difficulty setting, parameteri-

zation B, we note that the Simultaneous treatment no longer achieves the optimal Bayesian level.

The average of elicited posteriors across the 20 rounds is 33.39, whereas the Bayesian posterior

is 22.97. With both information structure and sequencing being controlled, the only difference

between the Simultaneous parametrization A and Simultaneous B treatments is the difficulty of

the problem. Thus, in line with the evidence presented in the previous section, we find that an

increase in difficulty drives a wedge between observed and optimal behavior.

Result 4 (Belief Correction in Difficult Tasks). In the high-difficulty environment, delivering infor-
mation through two simultaneous signals decreases the gap between the observed and Bayesian beliefs
but does not eliminate it.

28See, for example, Esponda et al. (2023) who have the same baseline as us with the same parameter values but run
the experiment in a laboratory with university students as their sample pool. There, the average beliefs in round one
are around 64. These levels drop with learning but at a very slow rate.
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Figure 7: Posteriors in All A and B Treatments

0

10

20

30

40

50

60

70

80

90

100

M
is

al
ig

ne
d 

In
fo

rm
at

io
n 

P
os

te
ri

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rounds

Baseline Simultaneous Sequential HL Sequential LH 95% CI

pB
R

N
B

ay
es

ia
n

pB
R

N
B

ay
es

ia
n

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rounds

Parametrization A Parametrization B

Notes: We report the round-by-round average posteriors under misaligned information, alongside the 95% confidence

intervals, clustered at the individual level. The lower horizontal dashed line depicts the Bayesian posterior, while the

top dashed line depicts the perfect base-rate neglect posterior.

4.4 Information Structure and Sequencing

Having established the differences between the Baseline and Simultaneous treatments, we turn to

examine factors that drive this difference. Two main features distinguish the Simultaneous treat-

ment from the Baseline. First, the Baseline treatment features an information structure with an

informative prior and one signal, while the Simultaneous treatment has an uninformative prior

and delivers an equivalent amount of information via two signals. Second, in the Simultaneous

treatment, all information is delivered at the same time, whereas the Baseline presents informa-

tion sequentially; the prior precedes the signal. Either or both of these features may be responsible

for the differential behavior in the two treatments.

We use our sequential information treatments to decompose the role of these features in cor-

recting sub-optimal belief updating. Figure 7 depicts the round-by-round average posterior be-

liefs for all four treatments in parameterization A. Table 5 presents average posteriors when

pooling data across all rounds.

The Effect of Information Structure per se. The informative prior in the Baseline treatment

conveys an equivalent amount of information as the first signal in the Sequential HL treatment.

The accuracy of the second signal is the same in both treatments, as is the sequencing of infor-

mation. Thus, the difference between the two comes exclusively from the way information is

communicated—the information structure.

We evaluate this comparison in two steps. First, we compare beliefs elicited after the first sig-

nal in the Sequential HL treatment with the induced prior in the Baseline treatment. While these

are predicted to be identical theoretically, their empirical equivalence needs to be established.

Our data directly speaks to this equivalence. Barring implementation errors, we find that partic-
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ipants correctly update their beliefs when faced with an uninformative prior and one signal only

(see Figure 5 and the discussion in Section 4.2).

The second step is to compare the final beliefs elicited in the Simultaneous HL treatment with

those in the Baseline. Here, as well, we find no difference in elicited beliefs at the aggregate level,

see Figure 7 and Table 5. The p-value of the difference is 0.28 for parametrization A and 0.62

for parametrization B. This aggregate data, however, hides some individual differences, which we

explore in detail in Section A.2 in the Appendix.29

Result 5 (Information Structure Effect). We document no aggregate effect on participants’ reported
beliefs when altering the information structure.

The Effect of Information Sequencing. The Sequential HL and Sequential LH treatments differ

only in the order in which the high- and low-accuracy signals are received. These two treatments

are necessary to disentangle the effect of the order in which signals are received from the effect of,

say, conditioning more heavily than theoretically optimal on the high-accuracy signal regardless

of its timing.

Figure 7 shows that the sequencing of information has a substantial impact on belief updating.

In all Sequential treatments, participants put a higher-than-optimal weight on the most recent

signal they received. In the Sequential HL treatment with parameterization A, this means partici-

pants overweight the second (positive) signal by forming posteriors that hover around 60.89 across

the twenty rounds, while in the Sequential LH treatment, they overweight the second (negative

signal) and arrive at the lower-than-Bayesian posterior of 31.70. A similar pattern happens in the

parameterization B, in which we observe participants overweighting the second (positive) signal

by arriving at the average posterior of 63.70 in the Sequential HL treatment and the significantly

smaller average posterior of 25.04 in the Sequential LH treatment.30

Result 6 (Recency Bias). We document a sizable recency bias independent of signal accuracy and task
difficulty.

Our results share similarities with previous literature documenting a recency bias. However,

we capture this effect in a framework in which we can decompose and quantify its influence

apart from other factors. Additionally, by introducing variations in the environment, we assess

its robustness across parameterizations. It is worth emphasizing that we document a sizable re-

cency bias, despite the fact that the timing between signal arrival and belief elicitation is minimal.

Participants receive their first signal, their beliefs are elicited, and immediately after, posteriors

incorporating the second signal are elicited. Furthermore, during this second elicitation, the in-

terface reminds participants of the realized value of the first signal. Despite the minimal time

29To preview these results, in Section A, we show that a change in the information structure mostly affects beliefs
of participants who rely on all information they receive: their beliefs in the Sequential HL treatment are less extreme
compared to reported beliefs in the Baseline treatment.

30Recall from Section 4 that in our data analysis, we normalize the high-accuracy signal to be negative and the
low-accuracy signal to be positive.
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elapsed between observing the first signal and being reminded of its realized value, we still ob-

serve a significant recency bias. If there was a substantial time gap between signal delivery, one

would expect this bias to be even stronger.

Robustness Across Parameters Lastly, comparing the left and right panels of Figure 7 reveals

that the ranking of estimated means across treatments remains unchanged under both parame-

terization A and B. The average posterior for the Baseline and the Sequential HL treatments are

not statistically distinguishable, followed by a significantly lower posterior for the Simultaneous

treatment and an even lower one for the Sequential LH treatment. Under both parametrizations,

we find that the structure of information, i.e., the difference between delivering information via

an informative prior and one signal versus an uninformative prior and two signals, has no effect

on posteriors in aggregate. On the contrary, sequencing plays an important role in determining

posterior beliefs. Specifically, we find a large recency bias, consistent with findings reported in

Section 4.4.

Result 7 (Robustness). The ranking between all four treatments is preserved across different parame-
terizations, as are results regarding information structure and sequencing.

4.5 Countering Biases

In Section 4.4 we saw that in the low-difficulty parametrization A, the simultaneous release of

information leads to elicited beliefs not statistically distinguishable from the Bayesian posterior.

This is not the case in the high-difficulty parameterization B, where the simultaneous release of

information does not completely align posterior beliefs with Bayesian ones, though it does bring

them closer.

In the preceding sections, we highlighted two significant biases that impact belief updating.

In difficult environments, when information is presented simultaneously, by failing to adequately

react to the high-accuracy signal, participants tend to under-follow it. Conversely, we have also

observed a pronounced recency bias, whereby participants tend to over-follow the most recent

signal. With these biases in mind, we explore the possibility of mitigating the difficulty bias

by releasing information sequentially, with the high-accuracy signal delivered last to utilize the

sequencing bias. An examination of Figure 7 confirms that in high-difficulty environments, Se-

quential LH treatment yields results closer to the Bayesian posterior compared to the Simulta-

neous treatment. This observation is further supported by posteriors averaged across all rounds

presented in Table 5: posteriors in the Sequential LH treatment are not statistically different from

the Bayesian level, p-value=0.312.

Thus, the optimal information release strategy depends on the environment. In low-difficulty

settings where signals are generally weighted correctly, simultaneous information release proves

to be optimal. Conversely, in high-difficulty settings where there’s a risk of incorrectly weighting

signals, leveraging the recency bias can help mitigate this issue.

25



Result 8 (Countering Biases). The bias arising from sequential information arrival (recency bias) can
help mitigate the difficulty bias, which arises from non-linear thinking required to reach the Bayesian
posterior.

4.6 Drivers of Base-Rate Neglect

Table 5, we present average reported beliefs for all treatments under parametrizations A (Ã) and B

(B̃). We provide these estimations for both the entire dataset and for the last five rounds separately.

Notably, the observed changes in means are relatively small.

Table 5: Estimated Means

Parameters A ( Ã) Parameters B ( B̃)
All Rounds Last 5 Rounds All Rounds Last 5 Rounds

Baseline 63.79 60.43 61.93 57.97
(1.967) (2.423) (2.854) (3.447)

Simultaneous 41.65 40.29 33.39 31.77
(0.985) (1.293) (1.435) (1.678)

Sequential HL 60.89 59.95 63.70 62.35
(1.785) (1.966) (2.205) (2.538)

Sequential LH 31.70 32.56 25.04 25.79
(1.633) (1.849) (2.093) (2.464)

Individual-level clustered errors in parentheses

In both parameterizations, the Baseline treatment exhibits comparable relative levels of base-

rate neglect

µABench −µ
A
Bayes

µApBRN −µ
A
Bayes

=
63.79 − 41.37

80− 41.37
≈ 0.58,

µBBench −µ
B
Bayes

µBpBRN −µ
B
Bayes

=
61.93 − 22.97

85− 22.97
≈ 0.63.

In the calculations above, a score of 0 implies that, on average, participants choose the Bayesian

posterior, while a score of 1 implies that, on average, participants choose the perfect base-rate

neglect (pBRN) posterior. Recall that pBRN agents disregard the initial information and solely

follow the signal.

Next, we delve into a decomposition of the observed level of base-rate neglect, attributing it to

information structure, sequencing, and task difficulty. As discussed before, information structure

has no effect on beliefs at the aggregate level, while the task difficulty and the sequencing do. The

extent to which base-rate neglect is influenced by sequencing can be computed as follows

SequencingA =
µASeqHL −µ

A
Sim

µABench −µ
A
Bayes

=
60.89− 41.65
63.79− 41.37

≈ 0.86.

SequencingB =
µBSeqHL −µ

B
Sim

µBBench −µ
B
Bayes

=
63.70− 33.39
61.93− 22.97

≈ 0.78.

In addition, task difficulty plays a role in parameterization B and its contribution to the overall
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misspecified beliefs is

DifficultyB =
µBSim −µ

B
Bayes

µBBench −µ
B
Bayes

=
33.39− 22.97
61.93− 22.97

≈ 0.27.

The remaining portion of base-rate neglect, although not statistically significant, is due to infor-

mation structure. We visually summarize these effects in Figure 8, which illustrates the y-axis of

Figure 7 after aggregating data across rounds.

Figure 8: Average posteriors in all treatments
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Result 9 (Drivers of Base-rate Neglect). Information sequencing is the main catalyst of base-rate
neglect, with task difficulty also playing a significant role.

5 Conclusions

Through a series of lab experiments, we examined how task difficulty, information structure, and

information sequencing influence belief updating. Our findings highlighted that adjusting these

factors can alter observed behavior from closely resembling Bayesian reasoning to exhibiting siz-

able deviations. Our analysis revealed that each of these elements, at the aggregate or individual

level, exerts a distinct impact. We quantified these effects and explored strategies to leverage one

factor against another, aiming to minimize deviations from Bayesian updating.

Through a range of treatments, as well as supplementary data, we conducted a comprehensive

test of a notion of task difficulty rooted in the nonlinearities of the underlying problem. Taken

together, this evidence suggests that nonlinearities are influential in belief updating. We believe

peoples’ limited ability to fully internalize nonlinearities extends beyond the realm of belief up-

dating and presents an intriguing avenue for future research.
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A Individual Level Analysis

A.1 Primary Data Patterns

We now shift our attention to individual-level behavior. For each participant, we calculate their

average elicited beliefs across all rounds for both aligned and misaligned information and present

these averages in Figure 9.31 Therefore, each datapoint in the figure represents the average behav-

ior of a single participant.

Figure 9: Average Individual Choices
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Notes: To help distinguish the large amount of data bundled on the pBRN level, we apply a jitter of 1.5 magnitude. This

jittering perturbs the datapoint no further than a distance of 1.5 from the initial value. The top(bottom) row displays

data across treatments under parametrization A(B).

As can be seen, whenever information is released sequentially, the individual-level average

posteriors are heavily bunched around the pBRN level.32 This bunching phenomenon persists

regardless of whether the sequential information delivery stems from an informative prior and

a single signal (Baseline treatment) or an uninformative prior and two signals (Sequential treat-

ments). Only when information is released simultaneously do we observe beliefs that are not

heavily concentrated around the pBRN levels. These findings align with Result 9, demonstrating

31In the Online Appendix, we show the counterpart of Figure 9 utilizing only the last five rounds. All main features
remain unchanged.

32Note that, given our normalization, in Sequential LH, the pBRN level is (15,15) under the first parametrization and
(5,5) under the second.
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the substantial impact of recency bias.

Result 10 (De-Bundling). The Simultaneous treatment is the only treatment leading to individual-
level beliefs that are not strongly concentrated around the pBRN level.

A.2 Individual-Level Effect of Information Structure

Recall that we observe no significant differences between average beliefs reported in the Baseline

and the Sequential HL treatments in both parameterizations A and B (Section 4.4 and Section ??).

Although this holds true on average, in this section, we explore whether the information structure

plays a role on an individual level.

In Figure 10a and Figure 10b, we show estimated kernel densities of posteriors from the

Baseline and Sequential HL treatments, under parametrization A and B respectively. Within a

parametrization, the estimation pools posteriors across participants and rounds.33 In both pa-

rameterizations, despite the similar means, the distributions exhibit notable differences. In the

sequential HL treatments, there is a greater concentration towards intermediate values, which are

close to the Bayesian level. While the fractions of participants choosing posteriors around the

pBRN levels (80 for A and 85 for B) are comparable, in the sequential HL treatment we see fewer

values above these levels and fewer values for low posteriors. In both parameterizations, this

mass is redistributed from the more extreme values towards the center in such a way that keeps

the mean roughly unchanged. However, we run a Kolmogorov-Smirnov test between the Baseline

and Sequential HL distributions and reject the null that they are the same (p < 0.01) under both

parametrizations A and B.

The change between the distributions can be due to small changes in the behavior of many

participants, drastic changes in the behavior of some participants, or both. To further explore this,

we compute the average posterior for each participant across the 20 rounds and estimate kernel

densities based on these average posteriors. Doing so allows us to focus on the variation across

participants. In Figure 10c and Figure 10d, we present estimated kernel densities of the average

individual-level posteriors in the baseline and sequential HL treatments, under parametrization A

and B respectively. As can be seen, a considerable portion of participants, on average, choose levels

near the pBRN levels (80 for A and 85 for B). These participants disregard the initial information

and solely follow the second signal. For the remainder of the distributions, we see that in the

Sequential HL treatment, fewer individuals choose extreme values. Our interpretation of these

additional estimated kernel densities is that changing the information structure has no effect on

individuals who solely follow the second signal, while for others, it steers their choices towards

less extreme values—closer to the Bayesian level.

Below, we estimate the kernel densities under both parameterizations after removing partici-

pants that seem to behave in a pBRN manner. We remove participants from the analysis if their

33Due to the consistent behavior exhibited by participants, conditioning on any round results in a qualitatively
indistinguishable graph.
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Figure 10: Distribution of Posteriors and Individual-Level Averaged Posteriors
(a) Posteriors: Parameter A
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(b) Posteriors: Parameter B
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(c) Individual Average Posteriors: Parameter A
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(d) Individual Average Posteriors: Parameter B
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average aligned and misaligned posteriors are within 10 points from the pBRN posterior level.34

Figure 11: Individual-Level Averaged Posteriors Excluding pBNE

(a) Parametrization A
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Compared to Figure 10a and Figure 10b, the difference between the estimated kernel densities

becomes starker. This is in line with our interpretation that information structure seems to have

34For parametrization A, this implies we drop participants whose misaligned posteriors are between 70 and 90 and
whose aligned posteriors are between 10 and 30. For parametrization B, this implies we drop participants whose
misaligned posteriors are between 75 and 95 and whose aligned posteriors are between 5 and 25.

30



minimal to no effect on participants who show pBRN behavior; however, for other non-pBRN

participants, the effect is sizable. This is in line with our interpretation of the differential effect

of information structure. In other words, for participants who only focus on the most recent

information, the particular information structure does not play a substantial role—they ignore

the initial information regardless. On the other hand, for participants who somewhat incorporate

both the initial and the more recent information, the specific information structure can influence

belief updating.

Result 11 (Effect of Information Structure). Elicited beliefs of participants who exclusively rely on
recent information are unaffected by information structure. For other participants, a change in the
information structure results in less extreme reported beliefs.

A.3 Classifying Types: K-means Clustering

We next proceed by classifying participants into different types. To determine the number of

types and the types themselves, we utilize K-means clustering, which, simply put, is a method

that partitions n observations into k clusters/groups. Each observation is associated with the clus-

ter with the nearest mean (centroid). This results in a partitioning of the data space into Voronoi

cells. Specifically, K-means clustering minimizes within-cluster variances (squared Euclidean dis-

tances). This is one of the most commonly used unsupervised classifiers.35 By employing this

procedure, we bypass the need to determine types subjectively. Instead, we rely on the unsuper-

vised classification procedure to determine both the number of types and their characteristics. To

determine the number of clusters, we employ two commonly used approaches, the elbow method
and the silhouette score. Details of these approaches are presented in the Online Appendix. Based

on this initial analysis, the suggested number of clusters is three.

Since our aim is to evaluate how the share of different types changes across treatments, we

separate the typical K-means clustering into two parts. The first part, clustering, involves deter-

mining the centroids for each cluster. We do this by pooling the data across treatments within a

parametrization. Having determined the centroids, we then proceed with the second part, clas-

sification, which simply associates each observation to the cluster with the nearest mean.36 To

identify the centroids, we use a standard iterative refinement technique. To summarize, we do

the following: (i) determine the number of clusters, (ii) determine the centroids, and (iii) classify

participants.

We follow the exercise described above for treatments one through three. We exclude the

sequential LH treatment for technical reasons.37 The clustered data is shown in Figure 12, along

35An unsupervised classifier is a machine learning algorithm that automatically identifies patterns and groups data
without prior labeled training examples.

36Had we not followed the procedure described above, and instead, had we estimated centroids for each treatment,
there would be no natural way to compare shares of participants belonging to different groups across treatments since
what a group is would differ from treatment to treatment.

37In the sequential LH treatment, if we do not normalize the data, as we have done in the main analysis, the Bayesian
posterior will have a different position compared to the three other treatments. If we normalize the data, the pBRN
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with the three centroids and the corresponding Voronoi sets they generate.

Figure 12: Parametrization A Clustering
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Notes: Participants are categorized into three separate clusters. Dark gray dots mark the centroids of these clusters,

and dashed lines represent the Voronoi cells corresponding to these centroids.

We see the emergence of three distinct clusters, with their centroids exhibiting close proximity

to the Bayesian posterior (4.2,41.38), the 50-50 posterior, and the pBRN posterior (20,80). Con-

sequently, we interpret the first group as roughly Bayesian, or closest to Bayesian, the second as

potentially exhibiting confusion, and the third as roughly pBRN, or closest to pBRN. We label the

second cluster as potentially confused due to the fact that, regardless of the prior and signal value,

whether positive or negative, participants consistently opt for values close to 50. We display the

fraction of each type across treatments in Figure 13.

Figure 13: Parametrization A Cluster Histogram
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As can be seen, a simultaneous release of information under the first parametrization leads to

posterior will have a different position compared to the three other treatments. This, in turn, hampers our ability
to have a natural interpretation of the clusters. Hence, we proceed with the clustering exercise for the first three
treatments only.
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the largest share of participants classified as closest to Bayesian, with a minuscule share of agents

closest to the pBRN level. Importantly, although in the previous section, we saw that the estimated

mean under the Baseline and Sequential HL treatments was not statistically different, we see that

the composition of the type of participants differs. The Sequential HL treatment is characterized

by a higher share of closest-to-Bayesian agents and a lower share of closest-to-pBRN agents. Thus,

in line with the evidence presented in Section A.2, the information structure does seem to have

an effect on individual-level behavior.

Result 12 (Information Structure and Type Classification). Information structure affects participant
categorization.

We next turn our attention to parametrization B. We once again follow the procedure de-

scribed above and show the clustered data in Figure 14, along with the three centroids and the

corresponding Voronoi sets they generate.

Figure 14: Parametrization B Clustering
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Notes: Participants are categorized into three separate clusters. Dark gray dots mark the centroids of these clusters,

and dashed lines represent the Voronoi cells corresponding to these centroids.

We see the emergence of three distinct clusters, with their centroids exhibiting close proximity

to the Bayesian posterior (0.9,22.97), an in-between posterior, and the pBRN posterior (15,85).

Consequently, we interpret the first group as roughly Bayesian, or closest to Bayesian, the second

as in between the two extremes, and the third as roughly pBRN, or closest to pBRN. We display

the fraction of each type across treatments in Figure 13.
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Figure 15: Parametrization B Cluster Histogram
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Once more, a simultaneous release of information leads to the largest share of participants

classified as closest to Bayesian, with a minuscule share of agents classified as closest to the pBRN

level. We once again see that the classification of participants differs between the baseline and

sequential HL treatments.

Result 13 (Types Across Parameters). We observe variation in both clusters as well as the distribution
of participants among these clusters across different parameters.

B Concrete Specifications of Task Difficulty

B.1 Parsimonious Approach

When comparing two signals with different accuracies, the region of interest becomes the region

between the juncture where both signals have the same accuracy, all the way to the point char-

acterized by the accuracies of the signals. A Bayesian agent would be able to fully follow these

changes and figure out how much more they need to weigh the high-precision signal compared to

the lower-precision one. However, an agent struggling to follow such nonlinearities might make

errors proportional to these cumulative nonlinearities. To link the difficulty of a task with these

cumulative nonlinearities, we integrate the absolute value of the second derivative of the Bayesian

posterior, starting from the juncture where two signals have equal accuracy up to the point of in-

terest

C(θ2,θ1) =
∫ θ1

θ2

∣∣∣∣∣∣d2P (θ̃1,θ2|s1, s2)

dθ2
1

∣∣∣∣∣∣dθ̃1. (3)

Above, P (θ̃1,θ2|s1, s2) represents the Bayesian posterior given signal accuracies θ̃1, θ2, and signal

realizations s1 and s2.38 Low-difficulty environments will be those in which the Bayesian poste-

38This is one of many ways to capture the nonlinearities of the environment. Another measure that gives almost
identical predictions in this setup is the Gini coefficient (Lorenz curve), which looks at the deviation of a graph of
interest (the distribution of wealth) from the 45-degree line (a fully linear function).
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rior is rather linear, and thus, neglecting nonlinearities will not matter much, resulting in low

C(θ2,θ1) values. In such environments, a somewhat linear approximated understanding of the

environment proves effective. High-difficulty environments will be those in which the Bayesian

posterior is rather non-linear. In these environments, aggregate nonlinearities are large, leading

to large C(θ2,θ1) values. In these environments, relying on a linear approximated understanding

of the environment leads to sizable discrepancies.

For ease of exposition, we express the accuracy of a more accurate signal θ1 in terms of the

less accurate signal θ2, i.e., θ1 = θ2 + η, where η is a positive constant.39 The above definition of

task difficulty leads to two main testable implications.

1. Task Difficulty increases as the level of signal accuracies increases: ∂C(θ2,θ2+η)
∂θ2

> 0.

2. Task Difficulty increases as the gap between signal accuracies increases: ∂C(θ2,θ2+η)
∂η > 0.

As the level and/or the gap between signal accuracies increases, the updating task takes place

on a more nonlinear region, which, according to our predictions, may lead participants to make

larger mistakes.40

B.2 Modified Grether Model

Grether (1980) proposed a generalization of Bayesian updating that accommodated a variety of

deviations commonly observed in experiments. This generalization is extensively used in the liter-

ature on beliefs Benjamin (2019). In this section, we explore a modification of the Grether (1980)

model that yields comparable qualitative predictions to our task difficulty concept discussed in

Section 2.3.

Grether (1980) writes the posterior-odds ratio in the following form

π(S |s2, s1)
π(F|s2, s1)

=
(
P (s2|S)
P (s2|F)

P (s1|S)
P (s1|F)

)α (
P (S)
P (F)

)β
where π(·) captures an agent’s possibly biased beliefs. If α = β = 1, the model reduces to Bayesian

updating, whereas α < 1 (β < 1) implies underinference, extracting less information from the

signal (prior) than prescribed by Bayes’ rule. For comparability purposes, we focus on the unin-

formative prior case with P (S)
P (F) = 1.

We make two modifications to this formulation, given an uninformative prior: (i) agents prop-

erly update beliefs when receiving only one signal, and (ii) in the presence of more than one signal,

agents under-follow signals more, the more accurate signals are. The first modification relates to

the idea that task difficulty, or high nonlinearities, only appear when there is more than one source

of information. The second modification captures the idea that under Bayesian updating, agents

39Naturally, the value of η is restricted to be η ∈ (0,1−θ2).
40When both signals have the same realizations, there are parameter values that make the effect of the level non-

monotonic. However, our study focuses on cases with misaligned information, as declared in the preregistration and
described further in Section 3. For misaligned signals, the above predictions hold true for all parameter values.
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are expected to react more and more to small changes in signals’ accuracies as these accuracies

grow larger. It is in such cases that, we believe, the aforementioned sluggishness is emphasized,

and individuals fail to properly Bayesian update.

One way to accommodate these two modifications in the Grether (1980) model is to replace

parameter α with a function γ(θ1,θ2) that depends on the signals’ accuracies:

γ(θ1,θ2) = α · (2min(θ1,θ2)− 1)︸                ︷︷                ︸
∈[0,1], weight on α

+1 · (2− 2min(θ1,θ2))︸                ︷︷                ︸
∈[0,1], weight on 1

0 ≤ α ≤ 1 (4)

Note that the above functional form reflects the two proposed modifications. Indeed, if min(θ1,θ2) =
1/2 then γ(θ1,θ2) = 1 in line with the first modification and as min(θ1,θ2) increases γ(θ1,θ2) de-

creases, in line with the second modification.

To illustrate, Figure 16 focuses on the case of two misaligned signals and compares the Bayesian

posterior with the one induced by the modified Grether model across different θ1 and θ2 values.41

By design, the functions are in agreement when one signal is uninformative (θ1 or θ2 is 0.5). The

functions are also in agreement if both signals have equal accuracy (θ1 = θ2) because, in such

cases, both models assign equal weight to each signal.42

Figure 16: Gap Between Bayesian Posterior and Modified Greather

Notes: The figures above show the Bayesian posterior (left), a transparent Bayesian posterior, and the posterior of

the modified Grether model (middle), as well as their difference (right). The graphs are plotted for values θ1 and

θ2 ∈ [0.5,0.99]. The value of α is set to 0.

In all other cases, the two functions differ. If signal accuracies are low or if the gap between the

signal accuracies is small, the modified Grether model results in posteriors close to Bayesian ones.

41The posterior belief implied by the modified Grether model for two misaligned signals is

π(S |s2 = p,s1 = n) =

( θ2
1−θ2

1−θ1
θ1

)γ(θ1,θ2)

( θ2
1−θ2

1−θ1
θ1

)γ(θ1,θ2)
+ 1

42The two functions are also in agreement if one of the signals is fully informative (θ1 or θ2 is 1). To make displaying
the graphs clearer, this region is clipped off. Figure 16 only displays posteriors for θ1 and θ2 ∈ [0.5,0.99].
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However, when signals have very different accuracies, or when both signals are very accurate, the

modified Grether model produces noticeably more inert updating than the Bayesian one. This is

the region in which the sluggishness of our model plays a large role, leading to large differences.

These predictions mimic those described in Section 2.3.

B.3 Linear Thinking Model

In this section, we provide an alternative model that captures the difficulty of incorporating non-

linearities in belief-updating tasks. We assume that agents struggle to fully appreciate rapid

changes required to form correct posterior beliefs in response to small changes in fundamentals

and, instead, are only able to adapt to these changes partially.

Focusing on the case of misaligned signals, let π̃(S |s2 = p,s1 = n) be the posterior of an agent

who struggles to incorporate nonlinearities. We define the derivative of this posterior to be a

weighted average with weight α ∈ [0,1] on the derivative of the Bayesian posterior and a constant.

A constant is chosen to respect the idea that agents update beliefs correctly when there is only one

signal, i.e.,

dπ̃(S |s2 = p,s1 = n)
dθ1

= α
dP (S |s2 = p,s1 = n)

dθ1
+ (1−α)

a constant︷                         ︸︸                         ︷
dP (S |s2 = p,s1 = n)

dθ1

∣∣∣∣
θ2= 1

2

The derivative with respect to the other signal accuracy is similar. Solving the above partial

differential equation and using the fact that when α = 1 the equation reduces to the Bayesian

posterior, yields

π̃(S |s2 = p,s1 = n) = α
θ2(1−θ1)

θ2 +θ1 − 2θ2θ1︸              ︷︷              ︸
Bayesian Posterior

+(1−α)
(1

2
−θ1 +θ2

)
︸          ︷︷          ︸

Fully Linear

Note that since the first derivative is a convex combination of the Bayesian first derivative and

a constant, the second derivative will always be lower in magnitude than the Bayesian second

derivative.

As a final step, we compare the Bayesian posterior P (S |s2 = p,s1 = n) with the posterior from

the modified Grether model π(S |s2 = p,s1 = n) discussed in Section B.2, and the linear thinking

posterior derived in this section π̃(S |s2 = p,s1 = n). We show these posteriors for various levels of

θ1 with α = 0 in the first row and α = 1/2 in the second row of Figure 17. The modified Grether

and the linear thinking model produce similar predictions, both in the direction of departure

from Bayesian updating as well as in magnitude. The main difference between the two models

emerges when one of the signals becomes fully informative (θ1 = 1). Near this region, the modified

Grether model quickly converges to 0, while the linear thinking model does not. Again, since the

fully informative case is not the focus of this study, for relevant regions (away from θ1 = 1), for
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Figure 17: Model Prediction Comparison
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any value of α, the two models produce almost identical predictions. Importantly, under both

models, when the level of signal accuracies is low, the departure from Bayesian updating is small,

even for sizable differences in signal accuracies. In contrast, when the level of signal accuracies

is high, even small differences in signal accuracies lead to large gaps from the predicted Bayesian

behavior.

C Interface

Figure 18 shows the interface for the baseline treatment. Detailed descriptions of the interface

and instructions for each treatment can be found in the Online Appendix.
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Figure 18: Baseline Interface

D Additional Task Difficulty Robustness Checks

Task Difficulty and Accuracy Ratios Previous research in psychology suggests that individuals

may struggle to properly process information when its informativeness depends on ratios (Miller

et al., 1989). To investigate whether this issue can explain our data, we shift focus from the

absolute precision of high and low signals to their ratios and assess whether these ratios predict

participant errors. By dividing the precision of the high signal by the precision of the low signal

for treatments A, E, F, C, D, and B, respectively, we obtain

{1.063,1.059,1.056,1.133,1.125,1.118} .

Alternatively, dividing the low precision by the high precision yields

{0.941,0.944,0.947,0.882,0.889,0.895} .

Comparing the first (last) three ratios, in either of the calculations above, we see that the ratios

barely change, whereas Figure 2 reveals that the mistakes significantly increase. Furthermore,

in either calculation, the ratios are non-monotonic from F to C, whereas the mistakes are mono-
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tonically increasing. In summary, changes in signal precision ratios, regardless of the calculation

method, fail to align with the documented errors.

Task Difficulty and Preferences for Simplicity There is a growing body of research on prefer-

ences for simplicity. For example, Puri (2024) presents a model where agents incur a cost based

on the number of states a lottery covers. As shown in Figure 2, we demonstrate that the rate

of mistakes can vary significantly even when holding the support of the lottery fixed—in all six

treatments, participants face two possible outcomes and receive two signals. One might suggest

that, due to a preference for simplicity, participants may interpret signals as fully revealing when

the signals approach near-certainty accuracy. However, this explanation does not align with our

data. First, parametrizations C and D, with less precise signals than F, lead to higher error rates.

Second, and more critically, participants tend to underreact to the high-precision signals rather

than overreact.

Task Difficulty and Bayesian Posterior In a comprehensive review of the literature Benjamin

(2019) highlights that underinference tends to be more pronounced when the Bayesian posterior

is greater. We now examine whether this stylized fact alone can explain the observed patterns

in our data. Figure 19 plots the Bayesian posterior on the x-axis, with the observed posteriors in

blue and the predicted posteriors in orange on the y-axis. The predictions are based on the model

estimates in Table 3. As shown, the observed posteriors in our data are not monotonic with respect

to the Bayesian posteriors. These non-monotonicities are apparent in several cases—compare

(C) with (E), (F) with (C), and (D) with (F).43 Notably, the figure underscores that varying the

level—moving from (A) to (E) to (F), or from (C) to (D) to (B)—and changing the gap between

signal precisions are not equivalent. In other words, while both affect the Bayesian posterior, the

posterior alone is not a sufficient statistic to capture these distinct effects. While this was not the

focus of our study, it is possible to select different signal precision levels and gaps that result in

the same Bayesian posterior but, according to our predictions, would lead to differing error rates.

E Additional Analysis

E.1 Aligned Information Posteriors

In Figure 20a and Figure 20b, we graph the average round-by-round beliefs of participants when

information is aligned. For the Baseline treatment, these are cases when the realized signal is in

the direction in which the prior leans. For all other treatments, these are cases in which both

signals have the same realized value.

43Non-monotonicities are also evident in errors. See, for example, Figure 2 where the gap is larger under parametriza-
tion (C) compared to parametrization (F), despite the Bayesian posterior being higher in the latter.
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Figure 19: Bayesian and Observed(Predicted) Posteriors
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in blue and the predicted posterior in orange. The predictions are based on the model estimates in Table 3. The

posterior is flipped to make it in line with the observations from Benjamin (2019), that is, compared to the rest of the

paper ˜posterior = 100− posterior.

E.2 Task Difficulty and Cognitive Uncertainty: Additional Calculations

The sequential arrival of information is less than ideal for the study of task difficulty, as sequenc-

ing also impacts elicited beliefs. However, utilizing symmetric parameter cases, we can perform a

back-of-the-envelope calculation to account for the effect of sequencing. Consider the (70,70) and

(90,90) treatments, where the first (second) number corresponds to the accuracy of the prior (sig-

nal). Given our measure of task difficulty, these are both low-difficulty treatments. The Bayesian

posterior is 50 for both. Data reveals that the mean posteriors are 56 and 53, respectively. Thus,

gaplow ∈ [3,6], which is rather small despite the fact that belief elicitation is hindered by sequenc-

ing. Now, consider two examples with relatively high difficulty (90,70) and (70,90). Because we,

once again, normalize the high accuracy signal/prior to be negative, the Bayesian posterior in both

cases is 20.6. The data reveals that in the former case, the posterior is 43, whereas in the latter

case, the posterior is 37. This gap (between 43 and 37) is due to sequencing; in the former case,

the negative and high-accuracy information arrives first, whereas, in the second case, it arrives

later. Naturally, a treatment in which all information arrives simultaneously must lie between

these two values. Consequently, the gap, in this case, must be gaphigh ∈ [17.6,23.6]. Thus, the gap

has risen from [3,6] to [17,23.6], implying that the gap has increased by at least 11.23 or at most

20.6 percentage points. In the former (later) case, task difficulty would account for 11.23/17 = 66%

(20.6/23.6 = 87%) of the gap. Hence, while indirectly accounting for the effect of sequencing, we see

that the bulk of the increase in the gap can not be related to sequencing and, therefore, must be

difficulty related.
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Figure 20: Aligned Information Posteriors
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